On the Smoothed Complexity of Combinatorial Local Search

Yiannis Giannakopoulos

FAU Erlangen-Nürnberg

Alexander Grosz

Technical University of Munich

Themistoklis Melissourgos

University of Essex

Context

Polynomial Local Search (Johnson et al. 1988)

- Finding a sink in a DAG
- Neighbourhood can be queried in **poly** time, while graph can be **exponential**.

Main Theorem

(λ, β, μ) -separability:

- λ sets of *similar* transitions cover the neighbourhood graph. lacksquare
- Each set affects at most β different (*clusters* of) coordinates.
- At most μ different *configuration differences* appear in each cluster.
- PLS-complete problems:
 - Local Max-Cut/Flip
 - MaxSAT/Flip
 - TSP/k-Opt
- Potential Games/Best-Responses

Smoothed Analysis (Spielman, Teng 2004)

- Bridging the gap between worst-case and average-case analysis
- Smoothed Complexity in terms of expected number of steps
- **Parameterized** noise
- Variance of Gaussian perturbation
- Input given by probability density functions, bounded by ϕ

Congestion Games (Rosenthal 1973)

• *n* Players and resource set \mathcal{R} with latency function κ_r for each $r \in \mathcal{R}$ • Strategy set $\Sigma_i \subseteq \mathcal{R}$ for every player • Strategy profile $\boldsymbol{\sigma} \in \prod_{i=1}^{n} \Sigma_{i}$ • Cost of player depends on their used resources and their load ℓ_r . Rosenthal potential function Φ serves as local search objective for PLS.

Main Theorem: On any (λ, β, μ) -separable smoothed CLO instance, standard local search terminates after at most

 $3 \cdot \mu^{\beta} \lambda \cdot \nu^{2} \cdot \phi \cdot M \log(M+1)$

many steps in expectation.

Showcase: Congestion Games

Consider all best-response transitions where player *i* deviates from a_i to a'_i : We can represent the configurations $s(\sigma), s(\sigma')$ in tabular form:

Consider each row as a *coordinate cluster*:

• For $r \in a_i \Delta a'_i$, the difference in the configuration is some standard basis vector.

Combinatorial Local Optimization

Our model for PLS problems, called combinatorial local optimization (CLO):

- $S \subseteq \{0, 1, ..., M\}^{\nu} \times \{0, 1\}^{\nu}$ as set of configurations, consisting of cost and non-cost part
- Cost vector $c = (c_1, ..., c_{\nu}) \in [-1, 1]^{\nu}$
- Linear cost $C(s) = \sum_{i=1}^{\nu} c_i s_i$ for $s \in S$
- Smoothness: independently draw

- For $r \notin a_i \Delta a'_i$, the configuration doesn't change. $\Rightarrow \mu = n, \beta = \max |a \Delta a'|$
- In total, there exist $\lambda = n \cdot k(k-1)$ deviation sets.
- By application of the main theorem, the smoothed running time is bounded by $\mathcal{O}(n^{B+3}k^2m^2\phi)$

for $B = \max |a \Delta a'|$. Congestion games remain PLS-complete for constant B.

Our Applications

Problem	Perturbation	PLS-hardness	Smoothed Complexity	Novelty
(A)TSP/k-Opt	Edge/arc weights	For constant k	$\mathcal{O}(4^{k^2}m^{k+2}\phi)$	Unified proof for any k
MaxSAT/k-Flip	Clause weights	Even with bounded variable occurrence (<i>B</i>)	$\mathcal{O}(3^{kB}n^km^2\phi)$	Parameterization by variable occurrence
Local Max-k-Cut	Edge weights	Even for constant degree graphs	$\mathcal{O}(3^{\Delta(G)}nm^2\phi)$	Unified parameterization by degree and arbitrary k
Network coordination games	Payoffs	Even for constant degree graphs	$\mathcal{O}(k^{4\Delta(G)+6}nm^2\phi)$	Parameterization by degree, not exponential in strategy size
Congestion games	Latency functions: explicit, polynomial, and step- function	Even for constantly restrained games	$O(n^{B+3}k^2m^2\phi)$ explicit <i>B</i> -restrained games	Smoothness model and analysis
Network congestion games	Same as above	Even for constantly compact games	Polynomial for (<i>A</i> , <i>B</i>)- compact games with constant <i>B</i>	Smoothness model and analysis
Weighted set problems (3D-Matching, Set- Cover, Hitting-Set), Maximum Constraint Assignment	Weights	Constant neighbourhood sizes	Polynomial for any constant neighbourhood size	Smoothness model and analysis

each c_i from densities $f_i: [-1,1] \rightarrow [0,\phi]$

Congestion Games as CLO problem

- Explicit cost model: Values of κ_r are given as lists $(\kappa_r(1), \dots \kappa_r(n))$.
- Smoothness model: independent perturbations in each value
- Potential function is linear:

 $\Phi(\boldsymbol{\sigma}) = \sum_{r \in \mathcal{R}} \sum_{i=1}^{r} \kappa_r(i) [i \leq \ell_r(\boldsymbol{\sigma})]$

Parameters M = 1, $v = n \cdot m$