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This problem set will be discussed in the tutorials on November 6th/7th, 2018.

Problem 2.1 (Knapsack Problem)
In the Knapsack problem, we are given as input the size B ≥ 0 of the knapsack as well as n ∈ N items. Each item
i ∈ [n] has a value vi ≥ 0 and a size si ≥ 0. The goal is to select a subset of items I ⊆ [n] of maximum total value v(I)
which fit in the knapsack, i.e., s(I) ≤ B. We can assume that si ≤ B for all i ∈ [n] and s([n]) > B.

Consider the following greedy algorithm for Knapsack. Initially, all the items are sorted in order of non-increasing
ratio of value to size so that v1/s1 ≥ v2/s2 ≥ . . . ≥ vn/sn. The greedy algorithm puts items in the knapsack in index
order until the next item no longer fits, i.e., it finds k ∈ [n] such that s([k]) ≤ B < s([k + 1]). Finally, it returns either
[k] or {k + 1}, whichever has greater value.

i) Prove that this algorithm is a 1/2-approximation algorithm for Knapsack.

ii) Find two (families of) examples: one showing that the last step of the algorithm is essential for the approximation
guarantee and another one showing that your analysis of the algorithm is tight.

Problem 2.2 (The Longest Processing Time Rule for Long Processing Times)
Consider the problem of minimizing the makespan on identical parallel machines. Let m ∈ N be the number of machines
and n ∈ N be the number of jobs. Each job j ∈ [n] has a processing time pj ≥ 0. The goal is to find an assignment
σ : [n]→ [m] which minimizes the makespan Cmax = maxi∈[m] p

(
σ−1(i)

)
.

We consider instances where each processing time is more than one-third the optimal makespan. Further, we can
assume that p1 ≥ p2 ≥ . . . ≥ pn (by possibly relabeling the jobs).

i) For some C ≥ 0, define pj := 0 for j ∈ {n+ 1, . . . , 2m} and the undirected graph

GC :=
(
[2m], {{i, j} ⊆ [2m] : i 6= j, pi + pj ≤ C}

)
.

Show that there is a schedule with makespan no greater than C if and only if there is a perfect matching in G.

ii) Prove that the longest processing time rulea computes an optimal schedule.

Problem 2.3 (Minimum Steiner Tree Problem)
In the MinimumSteinerTree problem, we are given as input a connected undirected graph G = (V,E) with
costs ce ≥ 0 for all edges e ∈ E. The set of vertices is partitioned into non-terminals (or Steiner vertices) S and
terminals V \S. The goal is to find a Steiner tree of minimum cost, i.e., a minimum-cost tree containing all terminals.

i) Suppose that G is complete and the edge costs obey the triangle inequality, i.e., c{u,w} ≤ c{u,v} + c{v,w}
for all u, v, w ∈ V . Show that computing a minimum spanning tree in the induced graph G[V \ S] gives
a 2-approximation for such an instance of MinimumSteinerTree.

ii) Now, consider the general case. For an edge e = {v, w} ∈ E, let ĉe be the cost of a shortest v-w-path in G

w.r.t. c. Consider the metric completion Ĝ of G which is the complete graph on V with edge costs ĉ. Show how
to get a 2-approximation algorithm for MinimumSteinerTree by applying the algorithm above to Ĝ.

aThe longest processing time rule iteratively schedules an unscheduled job with longest processing time on a machine with the
currently lowest load
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Problem 2.4* (Arc-Disjoint Paths Problem)
In the ArcDisjointPaths problem, we are given as input a directed graph G = (V,A) and k ∈ N source-sink pairs
(si, ti) ∈ V × V, i ∈ [k]. The goal of the problem is to find as many pairwise arc-disjoint source-sink-paths as possible.
More formally, we want to find I ⊆ [k] and a si-ti-path Pi for all i ∈ I such that |I| is as large as possible and for any
i, j ∈ I, i 6= j, Pi and Pj are arc-disjoint.

Consider the following greedy algorithm for the problem. Let L be the maximum of
√
|A| and the diameter of the

graphb. For i from 1 to k, we check to see if there exists a si-ti path of length at most L in the graph. If there is such
a path Pi, we add i to I and remove the arcs of Pi from the graph.

Show that this greedy algorithm is an Ω(1/L)-approximation algorithm for ArcDisjointPaths.

bThe diameter of a graph G = (V, A) is given by maxv,w∈V d(v, w) where d(v, w) denotes the length of a shortest v-w-path in G.
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