Problem Set 3

Relaxed Decision Procedures and a FPTAS

Approximation Algorithms (MA5517)

Dr. Jannik Matuschke | M.Sc. Marcus Kaiser

This problem set will be discussed in the tutorials on November 13th/14th, 2018.
Problem 3.1 (Relaxed Decision Procedure)
Consider a combinatorial minimization problem with non-negative, integer-valued objective function. For an instance \mathcal{I}, let $X_{\mathcal{I}}$ be the set of feasible solutions and $f_{\mathcal{I}}: X_{\mathcal{I}} \rightarrow \mathbb{N}$ be the objective function. Assume that the encoding length of the optimal value is polynomial in the encoding length of the instance \mathcal{I}.

A ρ-relaxed decision procedure is an algorithm that, given an instance \mathcal{I} and a number $U \geq 0$, either finds a feasible solution $x \in X_{\mathcal{I}}$ with $f_{\mathcal{I}}(x) \leq \rho U$ or correctly states that no feasible solution $x \in X_{\mathcal{I}}$ with $f_{\mathcal{I}}(x) \leq U$ exists. Note that the output of the algorithm is not uniquely specified for $U<\min _{x \in X_{\mathcal{I}}} f_{\mathcal{I}}(x) \leq \rho U$.

Show that, for a given combinatorial minimization problem with integer-valued objective function, there exists a polynomial-time ρ-relaxed decision procedure if and only if there exists a ρ-approximation algorithm.

Problem 3.2 (Related Parallel Machine Scheduling)
In this problem, we consider a variant of the problem of scheduling on parallel machines so as to minimize the makespan, that is the maximum load of a machine. There are n jobs of lengths $p_{1} \geq p_{2} \geq \ldots \geq p_{n}>0$ which have to be scheduled on m machines with speeds $s_{1} \geq s_{2} \geq \ldots \geq s_{m}>0$. Processing a job $j \in[n]$ on machine $i \in[m]$ takes p_{j} / s_{i} units of time. This problem is called makespan minimization for scheduling on related machines.

Consider the following variant of the list scheduling algorithm. Given a deadline D, anytime a machine $i \in[m]$ becomes idle before time D, it processes the longest job $j \in[n]$ that has not yet been processed and satisfies $p_{j} / s_{i} \leq D$. If no such job is available or machine i becomes idle at time D or later, it stops processing. In the case that not all jobs are processed by this procedure, the algorithm states that no schedule of length D exists.

Prove that this algorithm is a polynomial-time 2-relaxed decision procedure and conclude that there is a 2-approximation algorithm.

Problem 3.3 (Unrelated Parallel Machine Scheduling)

We are given a scheduling problem with n jobs to be assigned to m machines. If job $j \in[n]$ is scheduled on machine $i \in[m]$, then it requires $p_{i j} \geq 0$ units of processing time. The goal is to find a schedule of minimum makespan. This problem is called makespan minimization for scheduling on unrelated parallel machines.

For a parameter $D \geq 0$, consider the following system of linear inequalities.

$$
\begin{array}{rlrl}
\sum_{i=1}^{m} x_{i j} & =1 & & \text { for all } j \in[n] \\
\sum_{j=1}^{n} p_{i j} x_{i j} & \leq D & & \text { for all } i \in[m] \\
& & \\
x_{i j} & \geq 0 & & \text { for all } i \in[n], j \in[m]: p_{i j} \leq D \\
x_{i j} & =0 & & \text { for all } i \in[n], j \in[m]: p_{i j}>D
\end{array}
$$

i) Prove that there is a feasible solution to the system of linear inequalities, if the length of an optimal schedule is no greater than D.
ii)* For a feasible solution x to the system of linear inequalities, define the bipartite graph $G_{x}:=\left(\mathcal{M} \cup \mathcal{J}, E_{x}\right)$ on machine vertices $\mathcal{M}:=\left\{M_{1}, \ldots, M_{m}\right\}$ and job vertices $\mathcal{J}:=\left\{J_{1}, \ldots, J_{n}\right\}$ with edge set

$$
E_{x}:=\left\{\left\{M_{i}, J_{j}\right\}: i \in[m], j \in[n], x_{i j}>0\right\} .
$$

Prove that if x is a basic feasible solution, each connected component of G_{x} has no more edges than vertices.
iii) Let x be a basic feasible solution. For all $i \in[m]$ and $j \in[n]$ with $x_{i j}=1$, assign job j to machine i. Show that this partial assignment can be extended to a schedule by assigning at most one additional job to each machine. Argue that this results in a schedule of length at most $2 D$.
iv) Show that there is a 2-approximation algorithm for makespan minimization for scheduling on unrelated parallel machines.

Problem 3.4 (Constrained Shortest Path Problem)

Suppose we are given a directed acyclic graph $G=(V, A)$ with specified source node $s \in V$ and sink node $t \in V$. Each arc $a \in A$ has an associated length $\ell_{a} \geq 0$ and cost $c_{a} \geq 0$. Further, we are given a budget $C \geq 0$. The goal is to find a shortest s - t-path with total cost no more than C. We can assume that all the numbers in the input are integers.
i) For some $L \in \mathbb{N}$, consider the expansion of G w.r.t. length $G^{L}:=\left(V^{L}, A^{L}\right)$ defined by

$$
V^{L}:=V \times\{0, \ldots, L\} \quad \text { and } \quad A^{L}:=\left\{\left((v, \ell),\left(w, \ell+\ell_{a}\right)\right): a=(v, w) \in A, \ell \in\left\{0, \ldots, L-\ell_{a}\right\}\right\} .
$$

Further, lift the costs to G^{L} by setting $c\left((v, \ell),\left(w, \ell+\ell_{a}\right)\right):=c_{a}$ for all $a=(v, w) \in A, \ell \in\left\{0, \ldots, L-\ell_{a}\right\}$.
Prove that there is a s - t-path of length L and cost at most C in G if and only if there is a $(s, 0)-(t, L)$-path of cost at most C in the graph G^{L}.
ii) For fixed $\varepsilon>0$, consider the following relaxed decision procedure.

Given $L>0$, set $\mu:=\frac{L \varepsilon}{|V|}$ and $\ell_{a}^{\mu}:=\left\lfloor\frac{\ell_{a}}{\mu}\right\rfloor$ for all $a \in A$.
Find a shortest s-t-path P in G w.r.t. ℓ^{μ} of total cost at most C. If P exists and $\ell^{\mu}(P) \leq \frac{|V|}{\varepsilon}$, return P. Otherwise, state that there is no s - t-path in G of total length at most L w.r.t. ℓ and total cost at most C.

Prove that this is a $(1+\varepsilon)$-relaxed decision procedure for the problem of finding a shortest s - t-path w.r.t. ℓ of total cost at most C and give a fully polynomial-time approximation scheme.

