
Lehrstuhl für Operations Research
Fakultät für Mathematik
Technische Universität München

Problem Set 3
Relaxed Decision Procedures and a FPTAS
Approximation Algorithms (MA5517)
Dr. Jannik Matuschke | M.Sc. Marcus Kaiser

This problem set will be discussed in the tutorials on November 13th/14th, 2018.

Problem 3.1 (Relaxed Decision Procedure)
Consider a combinatorial minimization problem with non-negative, integer-valued objective function. For an instance I,
let XI be the set of feasible solutions and fI : XI → N be the objective function. Assume that the encoding length of
the optimal value is polynomial in the encoding length of the instance I.

A ρ-relaxed decision procedure is an algorithm that, given an instance I and a number U ≥ 0, either finds a feasible
solution x ∈ XI with fI(x) ≤ ρU or correctly states that no feasible solution x ∈ XI with fI(x) ≤ U exists. Note that
the output of the algorithm is not uniquely specified for U < minx∈XI fI(x) ≤ ρU .

Show that, for a given combinatorial minimization problem with integer-valued objective function, there exists a
polynomial-time ρ-relaxed decision procedure if and only if there exists a ρ-approximation algorithm.

Problem 3.2 (Related Parallel Machine Scheduling)
In this problem, we consider a variant of the problem of scheduling on parallel machines so as to minimize the makespan,
that is the maximum load of a machine. There are n jobs of lengths p1 ≥ p2 ≥ . . . ≥ pn > 0 which have to be scheduled
on m machines with speeds s1 ≥ s2 ≥ . . . ≥ sm > 0. Processing a job j ∈ [n] on machine i ∈ [m] takes pj/si units of
time. This problem is called makespan minimization for scheduling on related machines.

Consider the following variant of the list scheduling algorithm. Given a deadline D, anytime a machine i ∈ [m] becomes
idle before time D, it processes the longest job j ∈ [n] that has not yet been processed and satisfies pj/si ≤ D. If no
such job is available or machine i becomes idle at time D or later, it stops processing. In the case that not all jobs are
processed by this procedure, the algorithm states that no schedule of length D exists.

Prove that this algorithm is a polynomial-time 2-relaxed decision procedure and conclude that there is a 2-approximation
algorithm.

Problem 3.3 (Unrelated Parallel Machine Scheduling)
We are given a scheduling problem with n jobs to be assigned to m machines. If job j ∈ [n] is scheduled on machine
i ∈ [m], then it requires pij ≥ 0 units of processing time. The goal is to find a schedule of minimum makespan. This
problem is called makespan minimization for scheduling on unrelated parallel machines.

For a parameter D ≥ 0, consider the following system of linear inequalities.

m∑
i=1

xij = 1 for all j ∈ [n]
n∑
j=1

pijxij ≤ D for all i ∈ [m]

xij ≥ 0 for all i ∈ [n], j ∈ [m] : pij ≤ D
xij = 0 for all i ∈ [n], j ∈ [m] : pij > D

i) Prove that there is a feasible solution to the system of linear inequalities, if the length of an optimal schedule is
no greater than D.

Page 1 of 2

ii)* For a feasible solution x to the system of linear inequalities, define the bipartite graph Gx := (M∪· J , Ex) on
machine verticesM := {M1, . . . ,Mm} and job vertices J := {J1, . . . , Jn} with edge set

Ex :=
{
{Mi, Jj} : i ∈ [m], j ∈ [n], xij > 0

}
.

Prove that if x is a basic feasible solution, each connected component of Gx has no more edges than vertices.

iii) Let x be a basic feasible solution. For all i ∈ [m] and j ∈ [n] with xij = 1, assign job j to machine i. Show that
this partial assignment can be extended to a schedule by assigning at most one additional job to each machine.
Argue that this results in a schedule of length at most 2D.

iv) Show that there is a 2-approximation algorithm for makespan minimization for scheduling on unrelated parallel
machines.

Problem 3.4 (Constrained Shortest Path Problem)
Suppose we are given a directed acyclic graph G = (V,A) with specified source node s ∈ V and sink node t ∈ V . Each
arc a ∈ A has an associated length `a ≥ 0 and cost ca ≥ 0. Further, we are given a budget C ≥ 0. The goal is to find a
shortest s-t-path with total cost no more than C. We can assume that all the numbers in the input are integers.

i) For some L ∈ N, consider the expansion of G w.r.t. length GL :=
(
V L, AL

)
defined by

V L := V × {0, . . . , L} and AL :=
{(

(v, `), (w, `+ `a)
)

: a = (v, w) ∈ A, ` ∈ {0, . . . , L− `a}
}
.

Further, lift the costs to GL by setting c
(
(v, `), (w, `+ `a)

)
:= ca for all a = (v, w) ∈ A, ` ∈ {0, . . . , L− `a}.

Prove that there is a s-t-path of length L and cost at most C in G if and only if there is a (s, 0)-(t, L)-path of
cost at most C in the graph GL.

ii) For fixed ε > 0, consider the following relaxed decision procedure.

Given L > 0, set µ := Lε
|V | and `µa :=

⌊
`a

µ

⌋
for all a ∈ A.

Find a shortest s-t-path P in G w.r.t. `µ of total cost at most C. If P exists and `µ(P) ≤ |V |
ε , return P .

Otherwise, state that there is no s-t-path in G of total length at most L w.r.t. ` and total cost at most C.

Prove that this is a (1 + ε)-relaxed decision procedure for the problem of finding a shortest s-t-path w.r.t. ` of
total cost at most C and give a fully polynomial-time approximation scheme.

Page 2 of 2

