

Problem Set 5

Derandomization and the Primal-Dual Method

Approximation Algorithms (MA5517)

Dr. Jannik Matuschke | M.Sc. Marcus Kaiser

This problem set will be discussed in the tutorials on November 27th/28th, 2018.

Problem 5.1 (Maximum *k*-Cut Problem)

In the MAXIMUM k-CUT problem, we are given an undirected graph G = (V, E), and non-negative weights $w_e \ge 0$ for all $e \in E$. The goal is to partition the vertex set V into k parts V_1, \ldots, V_k so as to maximize the weight of all edges whose endpoints are in different parts $w(\bigcup_{i,j\in[k]:i\neq j} \delta(V_i, V_j))$.

- i) Give a randomized (1 1/k)-approximation algorithm for MAXIMUM k-CUT.
- ii) Consider the following greedy algorithm for the MAXIMUMCUT problem (k = 2).

We suppose the vertices are numbered $V = \{v_1, \ldots, v_n\}$. In the first iteration, we place vertex v_1 in V_1 . In the *i*-th iteration, we will place vertex v_i in either V_1 or in V_2 . In order to decide which choice to make, we will look at all the edges $F \subseteq E$ that are incident to v_i and to a vertex in $\{v_1, \ldots, v_{i-1}\}$, i.e., $F = \{\{v_i, v_j\} \in E : 1 \le j \le i-1\}$. We choose to put vertex v_i in V_1 or V_2 depending on which of these two choices maximizes the weight of edges of F being in the cut.

Prove that this greedy algorithm is a 1/2-approximation algorithm by interpreting it as a derandomized algorithm.

Problem 5.2 (Minimum Spanning Tree Problem)

In the MINIMUMSPANNINGTREE problem, a undirected graph G = (V, E) with non-negative cost $c_e \ge 0$ on all edges $e \in E$ is given. The goal is to find a spanning tree in G of minimum total cost.

- i) Show that the MINIMUMSPANNINGTREE problem is a special case of STEINERFOREST.
- ii) Simplify the primal-dual algorithm for the STEINERFOREST problem as much as possible for instances of MINIMUMSPANNINGTREE.
- iii) Identify this algorithm with an algorithm for MINIMUMSPANNINGTREE that you already know and conclude that it is a 1-approximation.