## Problem Set 6

## The Primal-Dual Method and Iterated Rounding

## Approximation Algorithms (MA5517)

Dr. Jannik Matuschke|M.Sc. Marcus Kaiser

This problem set will be discussed in the tutorials on December 4th/5th, 2018.
Problem 6.1 (Multicut Problem in Trees)
Consider the Multicut problem in trees. In this problem, we are given an undirected tree $T=(V, E)$, cost $c_{e} \geq 0$ for each edge $e \in E$, and $k \in \mathbb{N}$ pairs of vertices $\left(s_{i}, t_{i}\right) \in V \times V, i \in[k]$. The goal is to find a set of edges $F \subseteq E$ of minimum cost such that for all $i \in[k], s_{i}$ and $t_{i}$ are in different connected components of $(V, E \backslash F)$.
i) For $i \in[k]$, let $P_{i}$ be the unique $s_{i}-t_{i}$-path in $T$. Show that the Multicut problem in trees can be formulated as the following integer program. Find the dual of its linear programming relaxation.

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} x_{e} & \\
\text { s.t. } & \sum_{e \in P_{i}} x_{e} \geq 1 & \text { for all } i \in[k] \\
& x_{e} \in\{0,1\} & \text { for all } e \in E
\end{array}
$$

ii) Suppose we root the tree at an arbitrary vertex $r \in V$. For $v \in V$, let $\operatorname{depth}(v)$ be the number of edges on the $r-v$-path in $T$. Further, let lca $\left(s_{i}, t_{i}\right)$ be the lowest common ancestor of $s_{i}$ and $t_{i}$, i.e., the vertex $v \in V$ on $P_{i}$ whose depth is minimal.

Develop a primal-dual algorithm. In each iteration, increase the dual variable that corresponds to a violated constraint maximizing depth $\left(\operatorname{lca}\left(s_{i}, t_{i}\right)\right)$. Prove that your algorithm returns a feasible solution after a polynomial number of steps.
iii) Prove that your algorithm gives a 2-approximation algorithm for the MULTICUT problem in trees.

Hint: Clean up in reverse order.

Problem 6.2 (Survivable Network Design Problem)
Let $G=(V, E)$ be an undirected graph and $w_{e} \geq 0$ be weights on the edge $e$ for all $e \in E$.
For a weakly supermodular ${ }^{\text {a }}$ function $f: 2^{V} \rightarrow \mathbb{N}$, consider the linear program

$$
\begin{array}{ll}
\min & \sum_{e \in E} w_{e} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(S)} x_{e} \geq f(S) \\
0 \leq x_{e} \leq 1 & \text { for all } \emptyset \neq S \subsetneq V \\
& \text { for all } e \in E
\end{array}
$$

Let $x$ be any basic feasible solution to the linear program such that $0<x_{e}<1$ holds for all $e \in E$. Denote the family of sets for which $x$ fulfills the corresponding inequalities with equality by $\mathcal{S}:=\left\{\emptyset \neq S \subsetneq V: \mathbb{1}_{\delta(S)}^{\top} x=f(S)\right\}$.
${ }^{\text {a }}$ For a finite set $E$, a function $f: 2^{E} \rightarrow \mathbb{R}$ is called weakly supermodular if $f(A)+f(B) \leq f(A \cap B)+f(A \cup B)$ or $f(A)+f(B) \leq f(A \backslash B)+f(B \backslash A)$ holds for all $A, B \subseteq E$.
i) Show that, for all $\emptyset \neq A, B \subsetneq V$, we have

$$
\mathbb{1}_{\delta(A \cap B)}+\mathbb{1}_{\delta(A \cup B)} \leq \mathbb{1}_{\delta(A)}+\mathbb{1}_{\delta(B)} \quad \text { and } \quad \mathbb{1}_{\delta(A \backslash B)}+\mathbb{1}_{\delta(B \backslash A)} \leq \mathbb{1}_{\delta(A)}+\mathbb{1}_{\delta(B)}
$$

ii) Prove that if $A, B \in \mathcal{S}$, then

$$
A \cap B, A \cup B \in \mathcal{S}, \text { and } \delta(A \backslash B) \cap \delta(B \backslash A)=\emptyset, \quad \text { or } \quad A \backslash B, B \backslash A \in \mathcal{S}, \text { and } \delta(A \cap B) \cap \delta(A \cup B)=\emptyset
$$

iii) Show that there is $\mathcal{L} \subseteq \mathcal{S}$ such that $\mathcal{L}$ is laminar ${ }^{\mathrm{b}}$ and $\left\{\mathbb{1}_{\delta(S)}: S \in \mathcal{L}\right\}$ is a basis of $\mathbb{R}^{E}$.

Hint: Try to extend a family $\mathcal{L}^{\prime} \subseteq \mathcal{S}$ for which $\left\{\mathbb{1}_{\delta(S)}: S \in \mathcal{L}^{\prime}\right\}$ does not span $\mathbb{R}^{E}$ by a set $S \in \mathcal{S}$ which minimizes the value $\left|\left\{T \in \mathcal{L}^{\prime}: S \cap T \neq \emptyset \wedge T \backslash S \neq \emptyset \wedge S \backslash T \neq \emptyset\right\}\right|$.

[^0]
[^0]:    ${ }^{\mathrm{b}}$ For a ground set $E$, a family of subsets $\mathcal{S} \subseteq 2^{E}$ is laminar if $A \subseteq B, A \supseteq B$, or $A \cap B=\emptyset$ holds for all $A, B \in \mathcal{S}$.

