

Problem Set 6

The Primal-Dual Method and Iterated Rounding

Approximation Algorithms (MA5517)

Dr. Jannik Matuschke | M.Sc. Marcus Kaiser

This problem set will be discussed in the tutorials on December 4th/5th, 2018.

Problem 6.1 (Multicut Problem in Trees)

Consider the MULTICUT problem in trees. In this problem, we are given an undirected tree T = (V, E), cost $c_e \ge 0$ for each edge $e \in E$, and $k \in \mathbb{N}$ pairs of vertices $(s_i, t_i) \in V \times V, i \in [k]$. The goal is to find a set of edges $F \subseteq E$ of minimum cost such that for all $i \in [k]$, s_i and t_i are in different connected components of $(V, E \setminus F)$.

i) For $i \in [k]$, let P_i be the unique s_i - t_i -path in T. Show that the MULTICUT problem in trees can be formulated as the following integer program. Find the dual of its linear programming relaxation.

min
$$\sum_{e \in E} c_e x_e$$

s.t. $\sum_{e \in P_i} x_e \ge 1$ for all $i \in [k]$
 $x_e \in \{0, 1\}$ for all $e \in E$

ii) Suppose we root the tree at an arbitrary vertex $r \in V$. For $v \in V$, let depth(v) be the number of edges on the r-v-path in T. Further, let lca (s_i, t_i) be the lowest common ancestor of s_i and t_i , i.e., the vertex $v \in V$ on P_i whose depth is minimal.

Develop a primal-dual algorithm. In each iteration, increase the dual variable that corresponds to a violated constraint maximizing depth $(lca(s_i, t_i))$. Prove that your algorithm returns a feasible solution after a polynomial number of steps.

iii) Prove that your algorithm gives a 2-approximation algorithm for the MULTICUT problem in trees.

Hint: Clean up in reverse order.

Problem 6.2 (Survivable Network Design Problem)

Let G = (V, E) be an undirected graph and $w_e \ge 0$ be weights on the edge e for all $e \in E$.

For a weakly supermodular^a function $f: 2^V \to \mathbb{N}$, consider the linear program

$$\begin{array}{ll} \min & \displaystyle \sum_{e \in E} w_e x_e \\ \text{s.t.} & \displaystyle \sum_{e \in \delta(S)} x_e \geq f(S) & \text{ for all } \emptyset \neq S \subsetneq V \\ & 0 \leq x_e \leq 1 & \text{ for all } e \in E \end{array}$$

Let x be any basic feasible solution to the linear program such that $0 < x_e < 1$ holds for all $e \in E$. Denote the family of sets for which x fulfills the corresponding inequalities with equality by $S := \{ \emptyset \neq S \subsetneq V : \mathbb{1}_{\delta(S)}^\top x = f(S) \}.$

^aFor a finite set E, a function $f : 2^E \to \mathbb{R}$ is called weakly supermodular if $f(A) + f(B) \leq f(A \cap B) + f(A \cup B)$ or $f(A) + f(B) \leq f(A \setminus B) + f(B \setminus A)$ holds for all $A, B \subseteq E$.

i) Show that, for all $\emptyset \neq A, B \subsetneq V$, we have

 $\mathbbm{1}_{\delta(A\cap B)} + \mathbbm{1}_{\delta(A\cup B)} \leq \mathbbm{1}_{\delta(A)} + \mathbbm{1}_{\delta(B)} \qquad \text{and} \qquad \mathbbm{1}_{\delta(A\setminus B)} + \mathbbm{1}_{\delta(B\setminus A)} \leq \mathbbm{1}_{\delta(A)} + \mathbbm{1}_{\delta(B)}.$

ii) Prove that if $A, B \in \mathcal{S}$, then

 $A \cap B, A \cup B \in \mathcal{S}, \text{ and } \delta(A \setminus B) \cap \delta(B \setminus A) = \emptyset, \qquad \text{or} \qquad A \setminus B, B \setminus A \in \mathcal{S}, \text{ and } \delta(A \cap B) \cap \delta(A \cup B) = \emptyset.$

iii) Show that there is $\mathcal{L} \subseteq \mathcal{S}$ such that \mathcal{L} is laminar^b and $\{\mathbb{1}_{\delta(S)} : S \in \mathcal{L}\}$ is a basis of \mathbb{R}^{E} .

Hint: Try to extend a family $\mathcal{L}' \subseteq \mathcal{S}$ for which $\{\mathbb{1}_{\delta(S)} : S \in \mathcal{L}'\}$ does not span \mathbb{R}^E by a set $S \in \mathcal{S}$ which minimizes the value $|\{T \in \mathcal{L}' : S \cap T \neq \emptyset \land T \setminus S \neq \emptyset \land S \setminus T \neq \emptyset\}|$.

For a ground set E, a family of subsets $S \subseteq 2^E$ is laminar if $A \subseteq B$, $A \supseteq B$, or $A \cap B = \emptyset$ holds for all $A, B \in S$.