
Jannik Matuschke

October 22, 2018

Lecture: Approximation AlgorithmsLecture: Approximation Algorithms

Schedule

Lectures (Jannik Matuschke)
I Mon 12:15-13:45 in MI 03.10.011
I Wed 12:15-13:45 in MI 03.10.011

from Oct 22 to Dec 5

Tutorials (Marcus Kaiser)

A Tue 16:00-17:30 in MI 03.08.011
B Wed 16:00-17:30 in MI 02.08.020

starting next week
registration from today 18:00

until tomorrow 23:59

Basic information

Problem sets
I published on Monday
I discussed the week after publication
I bonus for presenting solutions in tutorial

Exam
I first round in December
I retake in January

additional information & course materials:
http://www.or.tum.de/en/teaching/

winter2018/approxalgorithms/

http://www.or.tum.de/en/teaching/winter2018/approxalgorithms/
http://www.or.tum.de/en/teaching/winter2018/approxalgorithms/

The book

Introduction to
Approximation Algorithms

Motivation

Algorithmic wishlist
1 fast (run in polynomial time)

2 universal (work for any instance)

3 optimal (find best solution)

Choose two.
(unless P = NP)

Motivation

Algorithmic wishlist
1 fast (run in polynomial time)

2 universal (work for any instance)

3 optimal (find best solution)

Choose two.
(unless P = NP)

Motivation

Algorithmic wishlist
1 fast (run in polynomial time)

2 universal (work for any instance)

3 approximately optimal (find provably good solution)

⇓
Approximation Algorithms

Approximation Algorithms

Definition An α-approximation algorithm for an optimization
problem is an algorithm that

I runs in polynomial time and
I computes for any instance of the problem a solution
I whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm
OPT: value of optimal solution

for maximization problems:

ALG ≥ α · OPT

(α ≤ 1)

for minimization problems:

ALG ≤ α · OPT

(α ≥ 1)

We call α approximation factor or performance guarantee.

Approximation Algorithms

Definition An α-approximation algorithm for an optimization
problem is an algorithm that

I runs in polynomial time and
I computes for any instance of the problem a solution
I whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm
OPT: value of optimal solution

for maximization problems:

ALG ≥ α · OPT

(α ≤ 1)

for minimization problems:

ALG ≤ α · OPT

(α ≥ 1)

We call α approximation factor or performance guarantee.

Approximation Algorithms

Definition An α-approximation algorithm for an optimization
problem is an algorithm that

I runs in polynomial time and
I computes for any instance of the problem a solution
I whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm
OPT: value of optimal solution

for maximization problems:

ALG ≥ α · OPT

(α ≤ 1)

for minimization problems:

ALG ≤ α · OPT

(α ≥ 1)

We call α approximation factor or performance guarantee.

Example: Set Cover

The Set Cover problem

Input: elements E , sets F ⊆ 2E , weights w : F → R+

Task: find F ′ ⊆ F with
⋃

S∈F ′ S = E
minimizing

∑
S∈F ′ w(S)

3
2

8

4

Special case: Vertex Cover

The Set Cover problem

Input: elements E , sets F ⊆ 2E , weights w : F → R+

Task: find F ′ ⊆ F with
⋃

S∈F ′ S = E
minimizing

∑
S∈F ′ w(S)

3
2

8

4

Special case: Vertex Cover

The Set Cover problem

Input: elements E , sets F ⊆ 2E , weights w : F → R+

Task: find F ′ ⊆ F with
⋃

S∈F ′ S = E
minimizing

∑
S∈F ′ w(S)

3
2

8

4

Special case: Vertex Cover

How to design an approximation algorithm?

We don’t know OPT,
but we can get lower bounds.

How to design an approximation algorithm?

We don’t know OPT,
but we can get lower bounds.

IP formulation

min
∑
S∈F

w(S)x(S)

s.t.
∑

S:e∈S
x(S) ≥ 1 ∀ e ∈ E

x(S) ∈ {0, 1} ∀S ∈ F

LP relaxation

Z ∗ :=

min
∑
S∈F

w(S)x(S)

s.t.
∑

S∈F :e∈S
x(S) ≥ 1 ∀ e ∈ E

x(S) ≥ 0 ∀S ∈ F

LP value is lower bound:

Z ∗ ≤ OPT

LP relaxation

Z ∗ :=

min
∑
S∈F

w(S)x(S)

s.t.
∑

S∈F :e∈S
x(S) ≥ 1 ∀ e ∈ E

x(S) ≥ 0 ∀S ∈ F

LP value is lower bound:

Z ∗ ≤ OPT

LP relaxation

Z ∗ := min
∑
S∈F

w(S)x(S)

s.t.
∑

S∈F :e∈S
x(S) ≥ 1 ∀ e ∈ E

x(S) ≥ 0 ∀S ∈ F

LP value is lower bound:

Z ∗ ≤ OPT

(Deterministic) LP Rounding

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?∑

S∈F :e∈S
x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1

f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?∑

S∈F :e∈S
x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1

f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}

I Is every element covered?∑
S∈F :e∈S

x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1
f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?

∑
S∈F :e∈S

x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1
f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?∑

S∈F :e∈S
x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1

f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?∑

S∈F :e∈S
x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1

f

I Is the approximation factor fulfilled?

∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?∑

S∈F :e∈S
x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1

f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S)

≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?∑

S∈F :e∈S
x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1

f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗

A fortiori guarantee

I The LP rounding analysis gives us an a priori guarantee:
ALG ≤ f · OPT for any instance of Set Cover.

I For a concrete run of the algorithm, we get an a fortiori
guarantee from Z ∗:

ALG
OPT ≤

ALG
Z ∗

(we know ALG and Z ∗)

Integrality gap

OPT = min{ctx : x ∈ P ∩ ZE}
Z ∗ = min{ctx : x ∈ P} P

The integrality gap of an LP is the ratio OPT
Z ∗ .

The LP rounding algorithm implies that the integrality gap of the
Set Cover LP is bounded by f :

OPT ≤ ALG ≤ f · Z ∗

The Primal-Dual Method

Primal-dual method

max
∑
e∈E

y(e)

s.t.
∑
e∈S

y(e) ≤ w(S) ∀ S ∈ F

y(e) ≥ 0 ∀e ∈ E

Algorithm:
1 Initialize y(e) = 0 for all e ∈ E .
2 while (∃ uncovered element e)

Increase y(e) until a set S with e ∈ S becomes tight.
Add S to F ′. (

∑
e∈S y(e) = w(S))

3 Return F ′.

Theorem 1.2
Primal-dual is an f -approximation algorithm for Set Cover.

Primal-dual method

max
∑
e∈E

y(e)

s.t.
∑
e∈S

y(e) ≤ w(S) ∀ S ∈ F

y(e) ≥ 0 ∀e ∈ E

Algorithm:
1 Initialize y(e) = 0 for all e ∈ E .
2 while (∃ uncovered element e)

Increase y(e) until a set S with e ∈ S becomes tight.
Add S to F ′. (

∑
e∈S y(e) = w(S))

3 Return F ′.

Theorem 1.2
Primal-dual is an f -approximation algorithm for Set Cover.

Primal-dual method

max
∑
e∈E

y(e)

s.t.
∑
e∈S

y(e) ≤ w(S) ∀ S ∈ F

y(e) ≥ 0 ∀e ∈ E

Algorithm:
1 Initialize y(e) = 0 for all e ∈ E .
2 while (∃ uncovered element e)

Increase y(e) until a set S with e ∈ S becomes tight.
Add S to F ′. (

∑
e∈S y(e) = w(S))

3 Return F ′.

Theorem 1.2
Primal-dual is an f -approximation algorithm for Set Cover.

Greedy algorithm

Greedy algorithm
Algorithm:

1 while (∃ uncovered element)
Choose S ′ minimizing w(S′)

|S′\
⋃

S∈F′ S|
Add S ′ to F ′.

2 Return F ′.

n := |E |, Hn :=
∑n

i=1
1
i

Theorem 1.3
The Greedy Algorithm is an Hn-approximation for Set Cover.

Si : set selected in iteration i
ni : uncovered elements at start of iteration i

Lemma 1.4

For every iteration i : w(Si) ≤
ni − ni+1

ni
OPT .

Greedy algorithm
Algorithm:

1 while (∃ uncovered element)
Choose S ′ minimizing w(S′)

|S′\
⋃

S∈F′ S|
Add S ′ to F ′.

2 Return F ′. n := |E |, Hn :=
∑n

i=1
1
i

Theorem 1.3
The Greedy Algorithm is an Hn-approximation for Set Cover.

Si : set selected in iteration i
ni : uncovered elements at start of iteration i

Lemma 1.4

For every iteration i : w(Si) ≤
ni − ni+1

ni
OPT .

Greedy algorithm
Algorithm:

1 while (∃ uncovered element)
Choose S ′ minimizing w(S′)

|S′\
⋃

S∈F′ S|
Add S ′ to F ′.

2 Return F ′. n := |E |, Hn :=
∑n

i=1
1
i

Theorem 1.3
The Greedy Algorithm is an Hn-approximation for Set Cover.

Si : set selected in iteration i
ni : uncovered elements at start of iteration i

Lemma 1.4

For every iteration i : w(Si) ≤
ni − ni+1

ni
OPT .

Greedy algorithm
Algorithm:

1 while (∃ uncovered element)
Choose S ′ minimizing w(S′)

|S′\
⋃

S∈F′ S|
Add S ′ to F ′.

2 Return F ′. n := |E |, Hn :=
∑n

i=1
1
i

Theorem 1.3
The Greedy Algorithm is an Hn-approximation for Set Cover.

Si : set selected in iteration i
ni : uncovered elements at start of iteration i

Lemma 1.4

For every iteration i : w(Si) ≤
ni − ni+1

ni
OPT .

Greedy algorithm
Algorithm:

1 while (∃ uncovered element)
Choose S ′ minimizing w(S′)

|S′\
⋃

S∈F′ S|
Add S ′ to F ′.

2 Return F ′.

Theorem 1.5∑
S∈F ′ w(S) ≤ Hg · Z ∗, where g := maxS∈F |S|.

