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Schedule

Lectures (Jannik Matuschke)
I Mon 12:15-13:45 in MI 03.10.011
I Wed 12:15-13:45 in MI 03.10.011

from Oct 22 to Dec 5

Tutorials (Marcus Kaiser)

A Tue 16:00-17:30 in MI 03.08.011
B Wed 16:00-17:30 in MI 02.08.020

starting next week
registration from today 18:00

until tomorrow 23:59



Basic information

Problem sets
I published on Monday
I discussed the week after publication
I bonus for presenting solutions in tutorial

Exam
I first round in December
I retake in January

additional information & course materials:
http://www.or.tum.de/en/teaching/

winter2018/approxalgorithms/

http://www.or.tum.de/en/teaching/winter2018/approxalgorithms/
http://www.or.tum.de/en/teaching/winter2018/approxalgorithms/


The book



Introduction to
Approximation Algorithms



Motivation

Algorithmic wishlist
1 fast (run in polynomial time)

2 universal (work for any instance)

3 optimal (find best solution)

Choose two.
(unless P = NP)
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Motivation

Algorithmic wishlist
1 fast (run in polynomial time)

2 universal (work for any instance)

3 approximately optimal (find provably good solution)

⇓
Approximation Algorithms



Approximation Algorithms

Definition An α-approximation algorithm for an optimization
problem is an algorithm that

I runs in polynomial time and
I computes for any instance of the problem a solution
I whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm
OPT: value of optimal solution

for maximization problems:

ALG ≥ α · OPT

(α ≤ 1)

for minimization problems:

ALG ≤ α · OPT

(α ≥ 1)

We call α approximation factor or performance guarantee.



Approximation Algorithms

Definition An α-approximation algorithm for an optimization
problem is an algorithm that

I runs in polynomial time and
I computes for any instance of the problem a solution
I whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm
OPT: value of optimal solution

for maximization problems:

ALG ≥ α · OPT

(α ≤ 1)

for minimization problems:

ALG ≤ α · OPT

(α ≥ 1)

We call α approximation factor or performance guarantee.



Approximation Algorithms

Definition An α-approximation algorithm for an optimization
problem is an algorithm that

I runs in polynomial time and
I computes for any instance of the problem a solution
I whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm
OPT: value of optimal solution

for maximization problems:

ALG ≥ α · OPT

(α ≤ 1)

for minimization problems:

ALG ≤ α · OPT

(α ≥ 1)

We call α approximation factor or performance guarantee.



Example: Set Cover



The Set Cover problem

Input: elements E , sets F ⊆ 2E , weights w : F → R+

Task: find F ′ ⊆ F with
⋃

S∈F ′ S = E
minimizing

∑
S∈F ′ w(S)

3
2

8

4

Special case: Vertex Cover
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How to design an approximation algorithm?

We don’t know OPT,
but we can get lower bounds.
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IP formulation

min
∑
S∈F

w(S)x(S)

s.t.
∑

S:e∈S
x(S) ≥ 1 ∀ e ∈ E

x(S) ∈ {0, 1} ∀S ∈ F



LP relaxation

Z ∗ :=

min
∑
S∈F

w(S)x(S)

s.t.
∑

S∈F :e∈S
x(S) ≥ 1 ∀ e ∈ E

x(S) ≥ 0 ∀S ∈ F

LP value is lower bound:

Z ∗ ≤ OPT
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(Deterministic) LP Rounding



LP rounding

Idea: Select S if x(S) ≥ 1
f . f := maxe∈E |{S ∈ F : e ∈ S}|

Theorem 1.1
LP rounding is an f -approximation algorithm for Set Cover.

Proof. F ′ :=
{

S ∈ F : x(S) ≥ 1
f

}
I Is every element covered?∑

S∈F :e∈S
x(S) ≥ 1 ⇒ ∃ S ∈ F : x(S) ≥ 1

f

I Is the approximation factor fulfilled?∑
S∈F ′

w(S) ≤
∑

S∈F ′

w(S)·f ·x(S) ≤ f ·
∑
S∈F

w(S)x(S) = f ·Z ∗
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A fortiori guarantee

I The LP rounding analysis gives us an a priori guarantee:
ALG ≤ f · OPT for any instance of Set Cover.

I For a concrete run of the algorithm, we get an a fortiori
guarantee from Z ∗:

ALG
OPT ≤

ALG
Z ∗

(we know ALG and Z ∗)



Integrality gap

OPT = min{ctx : x ∈ P ∩ ZE}
Z ∗ = min{ctx : x ∈ P} P

The integrality gap of an LP is the ratio OPT
Z ∗ .

The LP rounding algorithm implies that the integrality gap of the
Set Cover LP is bounded by f :

OPT ≤ ALG ≤ f · Z ∗



The Primal-Dual Method



Primal-dual method

max
∑
e∈E

y(e)

s.t.
∑
e∈S

y(e) ≤ w(S) ∀ S ∈ F

y(e) ≥ 0 ∀e ∈ E

Algorithm:
1 Initialize y(e) = 0 for all e ∈ E .
2 while (∃ uncovered element e)

Increase y(e) until a set S with e ∈ S becomes tight.
Add S to F ′. (

∑
e∈S y(e) = w(S))

3 Return F ′.

Theorem 1.2
Primal-dual is an f -approximation algorithm for Set Cover.
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Greedy algorithm



Greedy algorithm
Algorithm:

1 while (∃ uncovered element)
Choose S ′ minimizing w(S′)

|S′\
⋃

S∈F′ S|
Add S ′ to F ′.

2 Return F ′.

n := |E |, Hn :=
∑n

i=1
1
i

Theorem 1.3
The Greedy Algorithm is an Hn-approximation for Set Cover.

Si : set selected in iteration i
ni : uncovered elements at start of iteration i

Lemma 1.4

For every iteration i : w(Si) ≤
ni − ni+1

ni
OPT .
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Greedy algorithm
Algorithm:

1 while (∃ uncovered element)
Choose S ′ minimizing w(S′)

|S′\
⋃

S∈F′ S|
Add S ′ to F ′.

2 Return F ′.

Theorem 1.5∑
S∈F ′ w(S) ≤ Hg · Z ∗, where g := maxS∈F |S|.


