Lecture: Approximation Algorithms

Jannik Matuschke

TUTT

October 22, 2018

Schedule

Lectures (Jannik Matuschke)

- Mon 12:15-13:45 in MI 03.10.011
- Wed 12:15-13:45 in MI 03.10.011 from Oct 22 to Dec 5

Tutorials (Marcus Kaiser)

- A Tue 16:00-17:30 in MI 03.08.011 B Wed 16:00-17:30 in MI 02.08.020
 - wed 10:00-17:30 In IVII 02:08:020

starting next week registration from today 18:00 until tomorrow 23:59

Problem sets

- published on Monday
- discussed the week after publication
- bonus for presenting solutions in tutorial

Exam

- first round in December
- retake in January

additional information & course materials: http://www.or.tum.de/en/teaching/ winter2018/approxalgorithms/

The book

Introduction to Approximation Algorithms

Algorithmic wishlist

- **1** fast (run in polynomial time)
- 2 **universal** (work for any instance)
- **3 optimal** (find best solution)

Algorithmic wishlist

- **1** fast (run in polynomial time)
- 2 **universal** (work for any instance)
- **3 optimal** (find best solution)

Choose two. (unless P = NP)

Algorithmic wishlist

- **1** fast (run in polynomial time)
- 2 **universal** (work for any instance)
- approximately optimal (find provably good solution)
 Approximation Algorithms

Approximation Algorithms

Definition An α -approximation algorithm for an optimization problem is an algorithm that

- runs in polynomial time and
- computes for any instance of the problem a solution
- \blacktriangleright whose value is within a factor of α of the optimal solution.

Approximation Algorithms

Definition An α -approximation algorithm for an optimization problem is an algorithm that

- runs in polynomial time and
- computes for any instance of the problem a solution
- whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm OPT: value of optimal solution

for maximization problems: for minimization problems:

$$ALG \ge \alpha \cdot OPT$$
 $ALG \le \alpha \cdot OPT$ $(\alpha \le 1)$ $(\alpha \ge 1)$

Approximation Algorithms

Definition An α -approximation algorithm for an optimization problem is an algorithm that

- runs in polynomial time and
- computes for any instance of the problem a solution
- whose value is within a factor of α of the optimal solution.

ALG: value of solution computed by algorithm OPT: value of optimal solution

for maximization problems: for minimization problems:

$$\begin{array}{ll} \mathsf{ALG} \geq \alpha \cdot \mathsf{OPT} & \qquad \mathsf{ALG} \leq \alpha \cdot \mathsf{OPT} \\ & (\alpha \leq 1) & \qquad (\alpha \geq 1) \end{array}$$

We call α approximation factor or performance guarantee.

Example: Set Cover

The SET COVER problem

Input: elements E, sets $\mathcal{F} \subseteq 2^E$, weights $w : \mathcal{F} \to \mathbb{R}_+$ Task: find $\mathcal{F}' \subseteq \mathcal{F}$ with $\bigcup_{S \in \mathcal{F}'} S = E$ minimizing $\sum_{S \in \mathcal{F}'} w(S)$

The SET COVER problem

Input: elements E, sets $\mathcal{F} \subseteq 2^{E}$, weights $w : \mathcal{F} \to \mathbb{R}_{+}$ Task: find $\mathcal{F}' \subseteq \mathcal{F}$ with $\bigcup_{S \in \mathcal{F}'} S = E$ minimizing $\sum_{S \in \mathcal{F}'} w(S)$

Special case: VERTEX COVER

The SET COVER problem

Input: elements E, sets $\mathcal{F} \subseteq 2^{E}$, weights $w : \mathcal{F} \to \mathbb{R}_{+}$ Task: find $\mathcal{F}' \subseteq \mathcal{F}$ with $\bigcup_{S \in \mathcal{F}'} S = E$ minimizing $\sum_{S \in \mathcal{F}'} w(S)$

Special case: VERTEX COVER

How to design an approximation algorithm?

How to design an approximation algorithm? We don't know OPT, but we can get lower bounds.

IP formulation

$$\begin{array}{ll} \min & \sum_{S \in \mathcal{F}} w(S) x(S) \\ \text{s.t.} & \sum_{S: e \in S} x(S) \geq 1 & \forall \ e \in E \\ & x(S) \in \{0, 1\} & \forall S \in \mathcal{F} \end{array}$$

LP relaxation

LP relaxation

$$\begin{array}{ll} \min & \sum_{S \in \mathcal{F}} w(S) x(S) \\ \text{s.t.} & \sum_{S \in \mathcal{F}: e \in S} x(S) \geq 1 & \forall \ e \in E \\ & x(S) \geq 0 & \forall S \in \mathcal{F} \end{array}$$

LP relaxation

$$Z^* := \min \sum_{\substack{S \in \mathcal{F} \\ S \in \mathcal{F}: e \in S}} w(S)x(S)$$

s.t.
$$\sum_{\substack{S \in \mathcal{F}: e \in S \\ x(S) \ge 0}} x(S) \ge 1 \qquad \forall e \in E$$

$$x(S) \ge 0 \qquad \forall S \in \mathcal{F}$$

LP value is lower bound:

$$Z^* \leq \mathsf{OPT}$$

(Deterministic) LP Rounding

Idea: Select S if
$$x(S) \ge \frac{1}{f}$$
.

$$f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$$

Idea: Select S if
$$x(S) \ge \frac{1}{f}$$
. $f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$

Theorem 1.1

LP rounding is an f-approximation algorithm for SET COVER.

Idea: Select S if
$$x(S) \ge \frac{1}{f}$$
. $f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$

Theorem 1.1

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

$$\mathcal{F}' := \left\{ S \in \mathcal{F} : x(S) \geq \frac{1}{f} \right\}$$

Idea: Select S if
$$x(S) \ge \frac{1}{f}$$
. $f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$

Theorem 1.1

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

$$\mathcal{F}' := \left\{S \in \mathcal{F} : x(S) \geq rac{1}{f}
ight\}$$

Is every element covered?

Idea: Select S if
$$x(S) \ge \frac{1}{f}$$
. $f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$

Theorem 1.1

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

$$\mathcal{F}' := \left\{ S \in \mathcal{F} : x(S) \geq rac{1}{f}
ight\}$$

-1

Is every element covered?

$$\sum_{S\in\mathcal{F}:e\in S} x(S) \ge 1 \quad \Rightarrow \quad \exists \ S\in\mathcal{F}: \ x(S) \ge rac{1}{f}$$

Idea: Select S if
$$x(S) \ge \frac{1}{f}$$
. $f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$

Theorem 1.1

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

$$\mathcal{F}' := \left\{ S \in \mathcal{F} : x(S) \geq rac{1}{f}
ight\}$$

-1

Is every element covered?

$$\sum_{S\in\mathcal{F}:e\in S} x(S) \ge 1 \quad \Rightarrow \quad \exists \ S\in\mathcal{F}: \ x(S) \ge rac{1}{f}$$

Is the approximation factor fulfilled?

Idea: Select S if
$$x(S) \geq \frac{1}{f}$$
. $f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$

Theorem 1.1

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

$$\mathcal{F}' := \left\{S \in \mathcal{F} : x(S) \geq rac{1}{f}
ight\}$$

-1

Is every element covered?

$$\sum_{S\in\mathcal{F}:e\in S} x(S) \ge 1 \quad \Rightarrow \quad \exists \ S\in\mathcal{F}: \ x(S) \ge rac{1}{f}$$

Is the approximation factor fulfilled?

$$\sum_{S\in\mathcal{F}'}w(S) \leq \sum_{S\in\mathcal{F}'}w(S)\cdot f\cdot x(S)$$

Idea: Select S if
$$x(S) \geq \frac{1}{f}$$
. $f := \max_{e \in E} |\{S \in \mathcal{F} : e \in S\}|$

Theorem 1.1

LP rounding is an f-approximation algorithm for SET COVER.

Proof.

$$\mathcal{F}' := \left\{S \in \mathcal{F} : x(S) \geq rac{1}{f}
ight\}$$

-1

Is every element covered?

$$\sum_{S\in\mathcal{F}:e\in S} x(S) \ge 1 \quad \Rightarrow \quad \exists \ S\in\mathcal{F}: \ x(S) \ge rac{1}{f}$$

Is the approximation factor fulfilled?

$$\sum_{S\in\mathcal{F}'}w(S) \leq \sum_{S\in\mathcal{F}'}w(S)\cdot f\cdot x(S) \leq f\cdot \sum_{S\in\mathcal{F}}w(S)x(S) = f\cdot Z^*$$

A fortiori guarantee

- The LP rounding analysis gives us an a priori guarantee: ALG $\leq f \cdot \text{OPT}$ for any instance of SET COVER.
- ► For a concrete run of the algorithm, we get an a fortiori guarantee from Z*:

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} \leq \frac{\mathsf{ALG}}{Z^*}$$

(we know ALG and Z^*)

Integrality gap

The LP rounding algorithm implies that the integrality gap of the SET COVER LP is bounded by f:

$$\mathsf{OPT} \leq \mathsf{ALG} \leq f \cdot Z^*$$

The Primal-Dual Method

Primal-dual method

$$\begin{array}{ll} \max & \sum_{e \in E} y(e) \\ \text{s.t.} & \sum_{e \in S} y(e) \leq w(S) \qquad \forall \ S \in \mathcal{F} \\ & y(e) \geq 0 \qquad \forall e \in E \end{array}$$

Primal-dual method

$$\begin{array}{ll} \max & \sum_{e \in E} y(e) \\ \text{s.t.} & \sum_{e \in S} y(e) \leq w(S) \qquad & \forall \; S \in \mathcal{F} \\ & y(e) \geq 0 \qquad & \forall e \in E \end{array}$$

Algorithm:

- 1 Initialize y(e) = 0 for all $e \in E$.
- 2 while $(\exists$ uncovered element e) Increase y(e) until a set S with $e \in S$ becomes tight. Add S to \mathcal{F}' . $(\sum_{e \in S} y(e) = w(S))$

3 Return \mathcal{F}' .

Primal-dual method

$$\begin{array}{ll} \max & \sum\limits_{e \in E} y(e) \\ \text{s.t.} & \sum\limits_{e \in S} y(e) \leq w(S) \qquad & \forall \; S \in \mathcal{F} \\ & y(e) \geq 0 \qquad & \forall e \in E \end{array}$$

Algorithm:

 Initialize y(e) = 0 for all e ∈ E.
 while (∃ uncovered element e) Increase y(e) until a set S with e ∈ S becomes tight. Add S to F'. (∑_{e∈S} y(e) = w(S))

3 Return \mathcal{F}' .

Theorem 1.2

Primal-dual is an f-approximation algorithm for SET COVER.

Algorithm:

1 while (\exists uncovered element) Choose S' minimizing $\frac{w(S')}{|S' \setminus \bigcup_{S \in \mathcal{F}'} S|}$ Add S' to \mathcal{F}' . 2 Return \mathcal{F}' .

Algorithm:

Theorem 1.3

The Greedy Algorithm is an H_n -approximation for SET COVER.

Algorithm:

Theorem 1.3

The Greedy Algorithm is an H_n -approximation for SET COVER.

- S_i : set selected in iteration *i*
- n_i : uncovered elements at start of iteration i

Algorithm:

Theorem 1.3

The Greedy Algorithm is an H_n -approximation for SET COVER.

- S_i : set selected in iteration *i*
- n_i : uncovered elements at start of iteration i

Lemma 1.4

For every iteration *i*:

$$w(S_i) \leq \frac{n_i - n_{i+1}}{n_i} \operatorname{OPT}.$$

Algorithm:

Theorem 1.5

$$\sum_{S\in \mathcal{F}'} w(S) \leq H_g \cdot Z^*$$
, where $g := \max_{S\in \mathcal{F}} |S|$.