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Previously ...
Example: Set Cover
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to be continued



Randomized LP Rounding



Randomized rounding

Idea: Include set S with probability x(S).

Expected cost: E[
∑

S∈F ′

w(S)] =
∑
S∈F

w(S)x(S) = Z ∗

but probability to produce set cover can be very low!
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Randomized rounding

Idea: For each S, throw c · ln(n) coins, each showing heads with
probability x(S). If at least one of them shows heads, include S.

n := |E |, c > 1

Probability that element e is not covered:∏
S:e∈S

(1− x(S))c ln(n) ≤ exp

−c ln(n)
∑

S:e∈S
x(S)

 ≤ 1
nc

Probability to generate a set cover:

1− Pr [∃ uncovered e] ≥ 1−
∑
e∈E

1
nc = 1− 1

nc−1

We say the algorithm outputs a set cover with high probability.
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Randomized rounding

Idea: For each S, throw c · ln(n) coins, each showing heads with
probability x(S). If at least one of them shows heads, include S.

n := |E |, c > 1

Theorem 2.1
The Randomized Rounding Algorithm computes a set cover w.h.p.
If it succeeds, its expected cost is at most 2c ln(n)Z ∗.



Hardness of Approximation



Approximation hardness

Theorem 2.2
There is a c > 0 such that there is no c ln(n)-approximation
algorithm for Set Cover, unless P = NP.

Theorem 2.3
There no α-approximation algorithm for Vertex Cover for any
α < 2, unless the Unique Games Conjecture is false or P = NP.
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Set Cover: Conclusion & Outlook

Approximation techniques
I LP rounding (deterministic/randomized)
I primal-dual method
I greedy algorithm

+ combinatorial lower bounds
+ local search
+ rounding data & dynamic programs
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Combinatorial Lower Bounds
for the

Traveling Salesman Problem



Traveling Salesman Problem (TSP)

Input: complete graph G = (V ,E ), distances d : E → R+

Task: find a Hamiltonian cycle C in G
minimizing d(C) :=

∑
e∈C d(e)



Hardness

Theorem
There is no α-approximation for TSP for any α, unless P = NP.

Proof Deciding whether graph has a Hamiltonian cycle is NP-hard.
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with d(e) = 0 if e ∈ E ′ and d(e) = 1 if e /∈ E ′.

Yes instance: OPT = 0 No instance: OPT ≥ 1
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Metric TSP

Input: complete graph G = (V ,E ), distances d : E → R+,
with d(u,w) ≤ d(u, v) + d(v ,w) for all u, v ,w ∈ V

Task: find a Hamiltonian cycle C in G
minimizing d(C) :=

∑
e∈C d(e)

e f

≤ d(e) + d(f )



The tree lower bound

Lemma 2.4
Let C be a Hamiltonian cycle in G and T be a minimum spanning
tree in G . Then d(T ) ≤ d(C).

Proof. Let e ∈ C . Then C \ {e} is a spanning tree in G . Hence

d(T ) ≤ d(C \ {e}) ≤ d(C).
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The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The double-tree algorithm
Algorithm:

1 Compute MST T .
2 Let H = (V , T ∪̇T ).
3 Compute Euler tour C ′ in H.
4 Shortcut C ′ to HC C .

Theorem 2.5
The Double-Tree Algorithm is a
2-approximation for metric TSP.

3

4

6

75

2

1



The matching lower bound

Lemma 2.6
Let C be a HC in G and let U ⊆ V with |U| even. Let M be a
minimum weight perfect matching on U. Then d(M) ≤ 1

2d(C).

Proof. Shortcut C to cycle C ′ on U.

d(C ′) ≤ d(C)
C ′ contains two disjoint perfect matchings on U.

2d(M) ≤ d(C ′)
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Christofides’ algorithm
Algorithm:

1 Compute MST T .
2 Compute minimum weight perfect matching M

on U := {v ∈ V : degT (v) is odd}.
3 Compute Euler tour C ′ in H := (V , T ∪̇M).
4 Shortcut C ′ to HC C .

Theorem 2.7
Christofides’ algorithm is a
3/2-approximation
for metric TSP.
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Summary: TSP

+ =

3/2-approximation for metric TSP


