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to be continued



Randomized LP Rounding
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Randomized rounding

Idea: Include set S with probability x(S).

Expected cost: E[ Z w(S)] = Z w(S)x(S)=Z*
SeF! SeF
but probability to produce set cover can be very low!
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Randomized rounding

Idea: For each S, throw c - In(n) coins, each showing heads with
probability x(S). If at least one of them shows heads, include S.
n:=|E|, c>1

Probability that element e is not covered:

H (1_X(5))cln(n) < exp (—cln(n) ZX(S)) < %
S:eeS S:eeS

Probability to generate a set cover:

1
1 — Pr[3 uncovered €] > 1—2; =1-
ecE
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We say the algorithm outputs a set cover with high probability.



Randomized rounding

Idea: For each S, throw c - In(n) coins, each showing heads with
probability x(S). If at least one of them shows heads, include S.
n:=|E|, c>1

Theorem 2.1

The Randomized Rounding Algorithm computes a set cover w.h.p.
If it succeeds, its expected cost is at most 2¢ In(n)Z*.



Hardness of Approximation
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Approximation hardness

Theorem 2.2

There is a ¢ > 0 such that there is no ¢ In(n)-approximation
algorithm for SET COVER, unless P = NP.

Theorem 2.3

There no a-approximation algorithm for VERTEX COVER for any
a < 2, unless the Unique Games Conjecture is false or P = NP.
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SET COVER: Conclusion & Outlook

Approximation techniques
» LP rounding (deterministic/randomized)
» primal-dual method
» greedy algorithm

+ combinatorial lower bounds

+ local search

+ rounding data & dynamic programs



Combinatorial Lower Bounds
for the
Traveling Salesman Problem



Traveling Salesman Problem (TSP)

Input: complete graph G = (V, E), distances d : E — R4

Task: find a Hamiltonian cycle C in G
minimizing d(C) := Y .cc d(e)
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There is no a-approximation for TSP for any «, unless P = NP.

Proof Deciding whether graph has a Hamiltonian cycle is NP-hard.

Given graph G’ = (V, E’) define complete graph G = (V, E)
with d(e) =0if e€ E' and d(e) =1if e ¢ E'.

YES instance: OPT =0 NoO instance: OPT >1 I



Metric TSP

Input: complete graph G = (V, E), distances d : E — R,
with d(u, w) < d(u,v)+ d(v,w) for all u,v,w € V
Task: find a Hamiltonian cycle C in G
minimizing d(C) := > .cc d(e)

< d(e)+ d(f)
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The tree lower bound

Let C be a Hamiltonian cycle in G and T be a minimum spanning
tree in G. Then d(T) < d(C).

Proof. Let e € C. Then C\ {e} is a spanning tree in G. Hence

d(T) < d(C\ {e}) < d(C).
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The double-tree algorithm

Algorithm:
Compute MST T. Theorem 2.5
Let H=(V, TUT). The Double-Tree Algorithm is a

Compute Euler tour C’ in H. 2-approximation for metric TSP.
B Shortcut €’ to HC C.
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Let C be a HCin G and let U C V with |U| even. Let M be a
minimum weight perfect matching on U. Then d(M) < 3d(C).
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The matching lower bound

Let C be a HCin G and let U C V with |U| even. Let M be a
minimum weight perfect matching on U. Then d(M) < 3d(C).

Proof. Shortcut C to cycle C' on U. d(C’") < d(C)
C’ contains two disjoint perfect matchings on U. 2d(M) < d(C)
o
[



Christofides’ algorithm

Algorithm:

Compute MST T.

Compute minimum weight perfect matching M
on U:={v eV :degy(v)is odd}.

Compute Euler tour C'in H:= (V, TUM).
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Christofides’ algorithm

Algorithm:

Compute MST T.

Compute minimum weight perfect matching M
on U:={v eV :degy(v)is odd}.

Compute Euler tour C'in H:= (V, TUM).

Shortcut C’ to HC C.

Theorem 2.7

Christofides’ algorithm is a
3/2-approximation
for metric TSP.



Summary: TSP

3/2-approximation for metric TSP
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