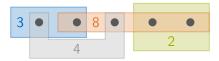
Lecture: Approximation Algorithms

Jannik Matuschke

TUTT

October 24, 2018

Example: Set Cover



Many techniques:

to be continued

Randomized LP Rounding

Idea: Include set *S* with probability x(S).

Idea: Include set *S* with probability x(S).

Expected cost:
$$\mathbb{E}[\sum_{S \in \mathcal{F}'} w(S)] = \sum_{S \in \mathcal{F}} w(S)x(S) = Z^*$$

Idea: Include set *S* with probability x(S).

Expected cost: $\mathbb{E}[\sum_{S \in \mathcal{F}'} w(S)] = \sum_{S \in \mathcal{F}} w(S)x(S) = Z^*$

but probability to produce set cover can be very low!

Idea: For each *S*, throw $c \cdot \ln(n)$ coins, each showing heads with probability x(S). If at least one of them shows heads, include *S*. n := |E|, c > 1

Idea: For each *S*, throw $c \cdot \ln(n)$ coins, each showing heads with probability x(S). If at least one of them shows heads, include *S*. n := |E|, c > 1

Probability that element *e* is not covered:

$$\prod_{S:e\in S} (1-x(S))^{c\ln(n)} \leq \exp\left(-c\ln(n)\sum_{S:e\in S} x(S)\right) \leq \frac{1}{n^c}$$

Idea: For each *S*, throw $c \cdot \ln(n)$ coins, each showing heads with probability x(S). If at least one of them shows heads, include *S*. n := |E|, c > 1

Probability that element *e* is not covered:

$$\prod_{S:e\in S} (1-x(S))^{c\ln(n)} \leq \exp\left(-c\ln(n)\sum_{S:e\in S} x(S)\right) \leq \frac{1}{n^c}$$

Probability to generate a set cover:

$$1 - \Pr\left[\exists \text{ uncovered } e\right] \geq 1 - \sum_{e \in E} \frac{1}{n^c} = 1 - \frac{1}{n^{c-1}}$$

Idea: For each *S*, throw $c \cdot \ln(n)$ coins, each showing heads with probability x(S). If at least one of them shows heads, include *S*. n := |E|, c > 1

Probability that element *e* is not covered:

$$\prod_{S:e\in S} (1-x(S))^{c\ln(n)} \leq \exp\left(-c\ln(n)\sum_{S:e\in S} x(S)\right) \leq \frac{1}{n^c}$$

Probability to generate a set cover:

$$1 - \Pr\left[\exists \text{ uncovered } e\right] \geq 1 - \sum_{e \in E} \frac{1}{n^c} = 1 - \frac{1}{n^{c-1}}$$

We say the algorithm outputs a set cover with high probability.

Idea: For each *S*, throw $c \cdot \ln(n)$ coins, each showing heads with probability x(S). If at least one of them shows heads, include *S*. n := |E|, c > 1

Theorem 2.1

The Randomized Rounding Algorithm computes a set cover w.h.p. If it succeeds, its expected cost is at most $2c \ln(n)Z^*$.

Hardness of Approximation

Approximation hardness

Theorem 2.2

There is a c > 0 such that there is no $c \ln(n)$ -approximation algorithm for SET COVER, unless P = NP.

Approximation hardness

Theorem 2.2

There is a c > 0 such that there is no $c \ln(n)$ -approximation algorithm for SET COVER, unless P = NP.

Theorem 2.3

There no α -approximation algorithm for VERTEX COVER for any $\alpha < 2$, unless the Unique Games Conjecture is false or P = NP.

SET COVER: Conclusion & Outlook

Approximation techniques

- LP rounding (deterministic/randomized)
- primal-dual method
- greedy algorithm

SET COVER: Conclusion & Outlook

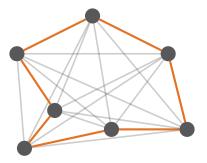
Approximation techniques

- LP rounding (deterministic/randomized)
- primal-dual method
- greedy algorithm
- + combinatorial lower bounds
- + local search
- + rounding data & dynamic programs

Combinatorial Lower Bounds for the Traveling Salesman Problem

Traveling Salesman Problem (TSP)

Input: complete graph G = (V, E), distances $d : E \to \mathbb{R}_+$ Task: find a Hamiltonian cycle C in Gminimizing $d(C) := \sum_{e \in C} d(e)$



Theorem

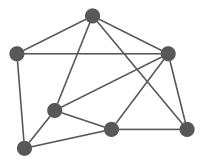
There is no α -approximation for TSP for any α , unless P = NP.

Hardness

Theorem

There is no α -approximation for TSP for any α , unless P = NP.

Proof Deciding whether graph has a Hamiltonian cycle is *NP*-hard.

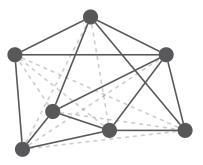


Hardness

Theorem

There is no α -approximation for TSP for any α , unless P = NP.

Proof Deciding whether graph has a Hamiltonian cycle is NP-hard.



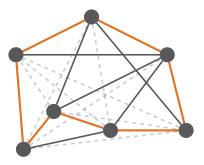
Given graph G' = (V, E') define complete graph G = (V, E)with d(e) = 0 if $e \in E'$ and d(e) = 1 if $e \notin E'$.

Hardness

Theorem

There is no α -approximation for TSP for any α , unless P = NP.

Proof Deciding whether graph has a Hamiltonian cycle is NP-hard.

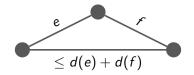


Given graph G' = (V, E') define complete graph G = (V, E)with d(e) = 0 if $e \in E'$ and d(e) = 1 if $e \notin E'$.

YES instance: OPT = 0 No instance: $OPT \ge 1$

Metric TSP

- Input: complete graph G = (V, E), distances $d : E \to \mathbb{R}_+$, with $d(u, w) \le d(u, v) + d(v, w)$ for all $u, v, w \in V$
- Task: find a Hamiltonian cycle C in G minimizing $d(C) := \sum_{e \in C} d(e)$



The tree lower bound

Lemma 2.4

Let C be a Hamiltonian cycle in G and T be a minimum spanning tree in G. Then $d(T) \leq d(C)$.

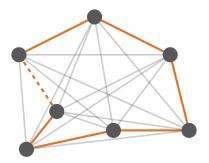
The tree lower bound

Lemma 2.4

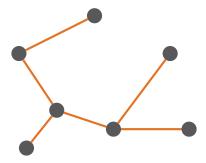
Let C be a Hamiltonian cycle in G and T be a minimum spanning tree in G. Then $d(T) \leq d(C)$.

Proof. Let $e \in C$. Then $C \setminus \{e\}$ is a spanning tree in G. Hence

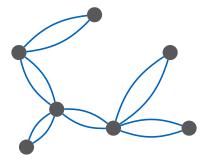
 $d(T) \leq d(C \setminus \{e\}) \leq d(C).$



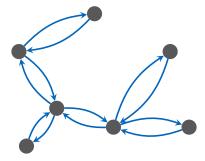
- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.



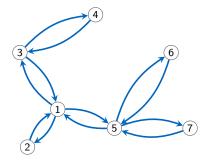
- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.



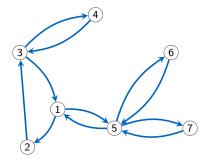
- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.



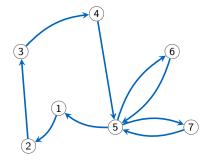
- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.



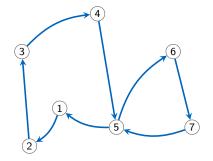
- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.



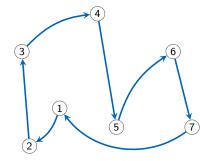
- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.



- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.



- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.

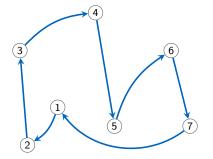


Algorithm:

- 1 Compute MST T.
- 2 Let $H = (V, T \cup T)$.
- 3 Compute Euler tour C' in H.
- 4 Shortcut C' to HC C.

Theorem 2.5

The Double-Tree Algorithm is a 2-approximation for metric TSP.



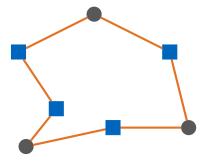
Lemma 2.6

Let C be a HC in G and let $U \subseteq V$ with |U| even. Let M be a minimum weight perfect matching on U. Then $d(M) \leq \frac{1}{2}d(C)$.

Lemma 2.6

Let C be a HC in G and let $U \subseteq V$ with |U| even. Let M be a minimum weight perfect matching on U. Then $d(M) \leq \frac{1}{2}d(C)$.

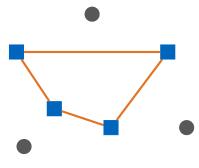
Proof. Shortcut C to cycle C' on U.



Lemma 2.6

Let C be a HC in G and let $U \subseteq V$ with |U| even. Let M be a minimum weight perfect matching on U. Then $d(M) \leq \frac{1}{2}d(C)$.

Proof. Shortcut C to cycle C' on U. $d(C') \le d(C)$

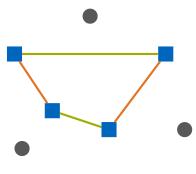


Lemma 2.6

Let C be a HC in G and let $U \subseteq V$ with |U| even. Let M be a minimum weight perfect matching on U. Then $d(M) \leq \frac{1}{2}d(C)$.

Proof. Shortcut *C* to cycle C' on U. C' contains two disjoint perfect matchings on U.

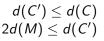
$$d(C') \leq d(C)$$

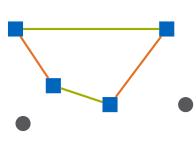


Lemma 2.6

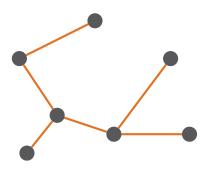
Let C be a HC in G and let $U \subseteq V$ with |U| even. Let M be a minimum weight perfect matching on U. Then $d(M) \leq \frac{1}{2}d(C)$.

Proof. Shortcut C to cycle C' on U. C' contains two disjoint perfect matchings on U. 2d(M) < d(C')

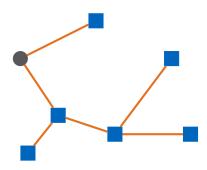




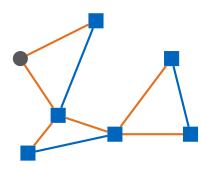
- 1 Compute MST T.
- 2 Compute minimum weight perfect matching Mon $U := \{v \in V : \deg_T(v) \text{ is odd}\}.$
- 3 Compute Euler tour C' in $H := (V, T \cup M)$.
- 4 Shortcut C' to HC C.



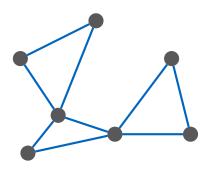
- 1 Compute MST T.
- 2 Compute minimum weight perfect matching Mon $U := \{v \in V : \deg_T(v) \text{ is odd}\}.$
- 3 Compute Euler tour C' in $H := (V, T \cup M)$.
- 4 Shortcut C' to HC C.



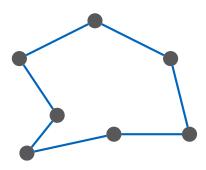
- 1 Compute MST T.
- 2 Compute minimum weight perfect matching Mon $U := \{v \in V : \deg_T(v) \text{ is odd}\}.$
- 3 Compute Euler tour C' in $H := (V, T \cup M)$.
- 4 Shortcut C' to HC C.



- 1 Compute MST T.
- 2 Compute minimum weight perfect matching Mon $U := \{v \in V : \deg_T(v) \text{ is odd}\}.$
- 3 Compute Euler tour C' in $H := (V, T \cup M)$.
- 4 Shortcut C' to HC C.

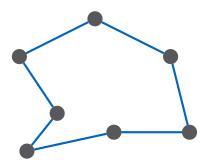


- 1 Compute MST T.
- 2 Compute minimum weight perfect matching Mon $U := \{v \in V : \deg_T(v) \text{ is odd}\}.$
- 3 Compute Euler tour C' in $H := (V, T \cup M)$.
- 4 Shortcut C' to HC C.



Algorithm:

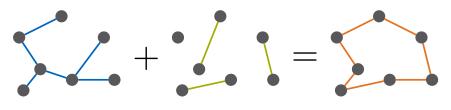
- 1 Compute MST T.
- 2 Compute minimum weight perfect matching Mon $U := \{v \in V : \deg_T(v) \text{ is odd}\}.$
- 3 Compute Euler tour C' in $H := (V, T \cup M)$.
- 4 Shortcut C' to HC C.



Theorem 2.7

Christofides' algorithm is a 3/2-approximation for metric TSP.

Summary: TSP



3/2-approximation for metric TSP