
Jannik Matuschke

November 5, 2018

Lecture: Approximation AlgorithmsLecture: Approximation Algorithms



Dynamic Programming
Example I: The Knapsack Problem



The Knapsack Problem

Input: set of n items I, capacity B,
for each item i ∈ [n]: value vi , size si (all integers)

Task: find S ⊆ I with
∑

i∈S si ≤ B,
maximizing value

∑
i∈S vi



A dynamic program
Idea: store all “good” subsets of {1, . . . , j} in A(j)

Dominance: X � Y :⇔ s(X ) ≤ s(Y ) and v(X ) ≥ v(Y )
We don’t need Y if we have X ...

Algorithm 1 (DP for Knapsack)
1 A(0) := {∅}
2 for j := 1 to n

A(j) := A(j − 1)
for each X ∈ A(j)

if s(X ) + sj ≤ B then
add X ∪ {j} to A(j)

while (∃X ,Y ∈ A(j) with X � Y )
remove Y from A(j)

3 return X ∈ A(n) maximizing v(X )



A dynamic program
Idea: store all “good” subsets of {1, . . . , j} in A(j)

Dominance: X � Y :⇔ s(X ) ≤ s(Y ) and v(X ) ≥ v(Y )
We don’t need Y if we have X ...

Algorithm 1 (DP for Knapsack)
1 A(0) := {∅}
2 for j := 1 to n

A(j) := A(j − 1)
for each X ∈ A(j)

if s(X ) + sj ≤ B then
add X ∪ {j} to A(j)

while (∃X ,Y ∈ A(j) with X � Y )
remove Y from A(j)

3 return X ∈ A(n) maximizing v(X )



A dynamic program
Idea: store all “good” subsets of {1, . . . , j} in A(j)

Dominance: X � Y :⇔ s(X ) ≤ s(Y ) and v(X ) ≥ v(Y )
We don’t need Y if we have X ...

Algorithm 1 (DP for Knapsack)
1 A(0) := {∅}
2 for j := 1 to n

A(j) := A(j − 1)
for each X ∈ A(j)

if s(X ) + sj ≤ B then
add X ∪ {j} to A(j)

while (∃X ,Y ∈ A(j) with X � Y )
remove Y from A(j)

3 return X ∈ A(n) maximizing v(X )



An approximation scheme
Idea: make V smaller by scaling all vi down (and rounding)

Let’s try to get a (1− ε)-approximation for some ε > 0.

Algorithm 2 (FPTAS for Knapsack)
1 M := max{vi : i ∈ [n], si ≤ B}, µ := εM

n
2 v ′

i := bvi/µc for all i ∈ [n]
3 Solve instance with v ′ instead of v , using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS):
(1− ε)-approximation for every ε > 0

Fully Polynomial-time Approximation Scheme (FPTAS):
(1− ε)-approximation for every ε > 0,
running time polynomial in encoding and 1/ε



An approximation scheme
Idea: make V smaller by scaling all vi down (and rounding)

Let’s try to get a (1− ε)-approximation for some ε > 0.

Algorithm 2 (FPTAS for Knapsack)
1 M := max{vi : i ∈ [n], si ≤ B}, µ := εM

n
2 v ′

i := bvi/µc for all i ∈ [n]
3 Solve instance with v ′ instead of v , using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS):
(1− ε)-approximation for every ε > 0

Fully Polynomial-time Approximation Scheme (FPTAS):
(1− ε)-approximation for every ε > 0,
running time polynomial in encoding and 1/ε



An approximation scheme
Idea: make V smaller by scaling all vi down (and rounding)

Let’s try to get a (1− ε)-approximation for some ε > 0.

Algorithm 2 (FPTAS for Knapsack)
1 M := max{vi : i ∈ [n], si ≤ B}, µ := εM

n
2 v ′

i := bvi/µc for all i ∈ [n]
3 Solve instance with v ′ instead of v , using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS):
(1− ε)-approximation for every ε > 0

Fully Polynomial-time Approximation Scheme (FPTAS):
(1− ε)-approximation for every ε > 0,
running time polynomial in encoding and 1/ε



An approximation scheme
Idea: make V smaller by scaling all vi down (and rounding)

Let’s try to get a (1− ε)-approximation for some ε > 0.

Algorithm 2 (FPTAS for Knapsack)
1 M := max{vi : i ∈ [n], si ≤ B}, µ := εM

n
2 v ′

i := bvi/µc for all i ∈ [n]
3 Solve instance with v ′ instead of v , using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS):
(1− ε)-approximation for every ε > 0

Fully Polynomial-time Approximation Scheme (FPTAS):
(1− ε)-approximation for every ε > 0,
running time polynomial in encoding and 1/ε


