Lecture: Approximation Algorithms

Jannik Matuschke

TUTT

November 5, 2018

Dynamic Programming Example I: The Knapsack Problem

The Knapsack Problem

Input: set of *n* items *I*, capacity *B*, for each item $i \in [n]$: value v_i , size s_i (all integers) Task: find $S \subseteq I$ with $\sum_{i \in S} s_i \leq B$, maximizing value $\sum_{i \in S} v_i$

A dynamic program

Idea: store all "good" subsets of $\{1, \ldots, j\}$ in A(j)

A dynamic program

Idea: store all "good" subsets of $\{1, \ldots, j\}$ in A(j)

Dominance: $X \succeq Y$: \Leftrightarrow $s(X) \leq s(Y)$ and $v(X) \geq v(Y)$ We don't need Y if we have X ...

A dynamic program

Idea: store all "good" subsets of $\{1, \ldots, j\}$ in A(j)

Dominance: $X \succeq Y$: \Leftrightarrow $s(X) \leq s(Y)$ and $v(X) \geq v(Y)$ We don't need Y if we have X ...

Algorithm 1 (DP for Knapsack)

```
1 A(0) := \{\emptyset\}

2 for j := 1 to n

A(j) := A(j-1)

for each X \in A(j)

if s(X) + s_j \leq B then

add X \cup \{j\} to A(j)

while (\exists X, Y \in A(j) \text{ with } X \succeq Y)

remove Y from A(j)

3 return X \in A(n) maximizing v(X)
```

Idea: make V smaller by scaling all v_i down (and rounding)

Idea: make V smaller by scaling all v_i down (and rounding)

Let's try to get a $(1 - \varepsilon)$ -approximation for some $\varepsilon > 0$.

Idea: make V smaller by scaling all v_i down (and rounding)

Let's try to get a $(1 - \varepsilon)$ -approximation for some $\varepsilon > 0$.

Algorithm 2 (FPTAS for Knapsack)

$$1 \quad M := \max\{v_i : i \in [n], s_i \leq B\}, \quad \mu := \frac{\varepsilon M}{n}$$

2
$$v'_i := \lfloor v_i / \mu \rfloor$$
 for all $i \in [n]$

3 Solve instance with v' instead of v, using Algorithm 1.

Idea: make V smaller by scaling all v_i down (and rounding)

Let's try to get a $(1 - \varepsilon)$ -approximation for some $\varepsilon > 0$.

Algorithm 2 (FPTAS for Knapsack)

$$M := \max\{v_i : i \in [n], s_i \leq B\}, \quad \mu := \frac{\varepsilon M}{n}$$

2
$$v'_i := \lfloor v_i / \mu \rfloor$$
 for all $i \in [n]$

3 Solve instance with v' instead of v, using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS): $(1 - \varepsilon)$ -approximation for every $\varepsilon > 0$

Fully Polynomial-time Approximation Scheme (FPTAS): $(1 - \varepsilon)$ -approximation for every $\varepsilon > 0$, running time polynomial in encoding and $1/\varepsilon$