Lecture: Approximation Algorithms

Jannik Matuschke

November 5, 2018
e e

Dynamic Programming
Example I: The Knapsack Problem

The Knapsack Problem

Input: set of n items /, capacity B,

for each item i € [n]: value v;, size s; (all integers)
Task: find S C [with ;.55 < B,

maximizing value } ;.5 v;

A dynamic program

Idea: store all “good” subsets of {1,...,/} in A())

A dynamic program

Idea: store all “good” subsets of {1,...,/} in A())

Dominance: X = Y & s(X) <s(Y) and v(X) > v(Y)
We don't need Y if we have X ...

A dynamic program

Idea: store all “good” subsets of {1,...,/} in A())

Dominance: X = Y & s(X) <s(Y) and v(X) > v(Y)

We don't need Y if we have X ...

Algorithm 1 (DP for Knapsack)

A(0) := {0}
forj:=1ton
Al) =AU -1)

for each X € A())
if s(X) 4+ s; < B then
add X U {j} to A())
while (3X, Y € A(j) with X = Y)
remove Y from A())
return X € A(n) maximizing v(X)

An approximation scheme

Idea: make V smaller by scaling all v; down (and rounding)

An approximation scheme

Idea: make V smaller by scaling all v; down (and rounding)

Let's try to get a (1 — €)-approximation for some € > 0.

An approximation scheme

Idea: make V smaller by scaling all v; down (and rounding)
Let's try to get a (1 — €)-approximation for some £ > 0.

Algorithm 2 (FPTAS for Knapsack)
M:=max{v;:i€[n],s < B}, p:==M

n
vl = |vi/p] for all i € [n]
Solve instance with v’ instead of v, using Algorithm 1.

An approximation scheme

Idea: make V smaller by scaling all v; down (and rounding)
Let's try to get a (1 — ¢)-approximation for some ¢ > 0.

Algorithm 2 (FPTAS for Knapsack)

M :=max{v;:i€[n],si < B}, p:= %
vl = |vi/p] for all i € [n]

Solve instance with v’ instead of v, using Algorithm 1.

Polynomial-time Approximation Scheme (PTAS):
(1 — &)-approximation for every € > 0

Fully Polynomial-time Approximation Scheme (FPTAS):
(1 — e)-approximation for every £ > 0,
running time polynomial in encoding and 1/¢

