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Dynamic Programming
Example 1l: Scheduling on

Identical Parallel Machines



Scheduling on Parallel Machines

Input: m identical machines,
n jobs with processing times p1,..., pn

Task: assign each job j € [n] to a machine o(j) € [m]
minimizing Cmax = MaX;e[m] 2_j: o(j)=i Pj

Cmax



An approximation scheme

Algorithm A(K) Jlong: pyr 2 1 e P

Compute optimal schedule for long jobs.  (complete enumeration)
For each short job j
Assign j to machine i with lowest load.
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Algorithm A(K) Jlong: pyr 2 1 e P

Compute optimal schedule for long jobs.  (complete enumeration)
For each short job j
Assign j to machine i with lowest load.

Theorem 5.5
A(k) is a (1 + 1/k)-approximation with running time O(m*™ 4+ n).
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An approximation scheme

Algorithm A'(k, T) jlong: p; > T
Schedule long jobs within (1 +1/k)T — B(k, T)
(or find out that T < OPT and stop).

For each short job j
Assign j to machine i with lowest load.

Theorem 5.6
If A'(k, T) computes a schedule, then it has makespan (1+1/k)T.



Subroutine for long jobs
;

Algorithm B(k, T) only long jobs: p; > +
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If m" < m then return corresponding schedule.

Otherwise return “failed”.
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Subroutine for long jobs
.

Algorithm B(k, T) only long jobs: p; > +

1] pJ : VT’J’J kl; for each j

2] Compute m’ := min number of machines needed to schedule
rounded long jobs within makespan T. — DP

If m" < m then return corresponding schedule.

Otherwise return “failed”.

Lemma 5.7

If B(k, T) computes a schedule, then it has makespan (14 1/k)T
If B(k, T) returns “failed”, then OPT > T.

Lemma 5.8
B(k, T) runs in time O(n*"(k + 1)K*).
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Dynamic program: ldea

Idea:
> only k? different job types (p} € {i- 7z : i € [K?]})
> n;: number of jobs of type i

» M(ny,...,n2) = #machines needed to schedule
instance defined by nq, ..., nge
» M(n1,...,ne) =14 mingeec M(n1 — s1,..., N2 — S2)

» C := configurations (schedule s; jobs of type i on the machine)

#instances < n*°  and  |C| < (k+1)¥°

dynamic program: nk2(k + 1)"2



Dynamic program: Pseudocode

Algorithm DP

M(0,...,0):=0, Q :={(0,...,0)}

B while Q #0)
Let g € Q such that M(q) is minimum.
for each s € C with g; + s; < n for all §

if M(q)+1 < M(q+ s) then
M(q+s) := M(q) +1

Q:=QuU{qg+s}
end if
end for
Q:=Q\{q}

Return M(nq,..., n.2).
) s Mk



An approximation scheme

Algorithm A'(k, T) jlong: p; > T
Schedule long jobs within (1 +1/k)T — B(k, T)
(or find out that T < OPT and stop).

For each short job j
Assign j to machine i with lowest load.

Theorem 5.9

If A'(k, T) computes a schedule, then it has makespan (1+1/k)T.
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An approximation scheme

Algorithm A'(k, T) jlong: pj > ©
Schedule long jobs within (14 1/k)T — B(k, T)
(or find out that T < OPT and stop).

For each short job j
Assign j to machine i with lowest load.

Theorem 5.9

If A'(k, T) computes a schedule, then it has makespan (1+1/k)T.
A'(k, T) runs in time O(n’(k 4 1)¥).

A'(k,T) is a (1 + 1/k)-relaxed decision procedure.
Can be turned into a (1+ 1/k)-approximation algorithm. (Exercise)
PTAS: choose k := [1/¢]
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Why no FPTAS?

There is a polynomial function g such that P||Gnax is NP-hard
even when restricted to instances with p; < g(n) for all j.

“P|| Cax is strongly NP-hard.”

Corollary 5.11
There is no FPTAS for P||Cnax, unless P = NP.

Proof. Consider instance with p; < g(n) for all j € [n]. Q := nq(n)
Run FPTAS with £ :=1/(Q + 1). OPT < @

» poly-time in input size, because 1/ < nq(n) + 1
» ALG < (1+4¢)OPT < OPT+OPT/Q < OPT+1
by integrality: ALG < OPT. O



