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Dynamic Programming
Example II: Scheduling on
Identical Parallel Machines



Scheduling on Parallel Machines

Input: m identical machines,
n jobs with processing times p1, . . . , pn

Task: assign each job j ∈ [n] to a machine σ(j) ∈ [m]
minimizing Cmax := maxi∈[m]

∑
j : σ(j)=i pj
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Cmax



An approximation scheme
Algorithm A(k) j ′ long: pj′ ≥ 1

km
∑

j∈[n] pj

1 Compute optimal schedule for long jobs. (complete enumeration)
2 For each short job j

Assign j to machine i with lowest load.
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Theorem 5.5
A(k) is a (1 + 1/k)-approximation with running time O(mkm + n).
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An approximation scheme
Algorithm A′(k,T ) j long: pj ≥ T

k

1 Schedule long jobs within (1 + 1/k)T

→ B(k, T)

(or find out that T < OPT and stop).
2 For each short job j

Assign j to machine i with lowest load.

Theorem 5.6
If A′(k,T ) computes a schedule, then it has makespan (1+ 1/k)T .
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Subroutine for long jobs
Algorithm B(k,T ) only long jobs: pj ≥ T

k

1 p′
j :=

⌊
k2pj
T

⌋
· T

k2 for each j

2 Compute m′ := min number of machines needed to schedule
rounded long jobs within makespan T .

→ DP

3 If m′ ≤ m then return corresponding schedule.
4 Otherwise return “failed”.

Lemma 5.7
If B(k,T ) computes a schedule, then it has makespan (1 + 1/k)T .
If B(k,T ) returns “failed”, then OPT > T .

Lemma 5.8
B(k,T ) runs in time O(nk2(k + 1)k2).
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Dynamic program: Idea
Idea:

I only k2 different job types (p′
j ∈ {i · T

k2 : i ∈ [k2]})

I ni : number of jobs of type i
I M(n1, . . . , nk2) := #machines needed to schedule

instance defined by n1, . . . , nk2

I M(n1, . . . , nk2) = 1 + mins∈C M(n1 − s1, . . . , nk2 − sk2)
I C := configurations (schedule si jobs of type i on the machine)

#instances ≤ nk2 and |C| ≤ (k + 1)k2

dynamic program: nk2(k + 1)k2
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Dynamic program: Pseudocode
Algorithm DP

1 M(0, . . . , 0) := 0, Q := {(0, . . . , 0)}
2 while (Q 6= ∅)

Let q ∈ Q such that M(q) is minimum.
for each s ∈ C with qi + si ≤ n for all i

if M(q) + 1 < M(q + s) then
M(q + s) := M(q) + 1
Q := Q ∪ {q + s}

end if
end for
Q := Q \ {q}

3 Return M(n1, . . . , nk2).



An approximation scheme
Algorithm A′(k,T ) j long: pj ≥ T

k

1 Schedule long jobs within (1 + 1/k)T → B(k, T)
(or find out that T < OPT and stop).

2 For each short job j
Assign j to machine i with lowest load.

Theorem 5.9
If A′(k,T ) computes a schedule, then it has makespan (1+ 1/k)T .
A′(k,T ) runs in time O(nk2(k + 1)k2).

A′(k,T ) is a (1 + 1/k)-relaxed decision procedure.
Can be turned into a (1+1/k)-approximation algorithm. (Exercise)
PTAS: choose k := d1/εe
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Why no FPTAS?

Theorem 5.10
There is a polynomial function q such that P||Cmax is NP-hard
even when restricted to instances with pj ≤ q(n) for all j .

“P||Cmax is strongly NP-hard.”

Corollary 5.11
There is no FPTAS for P||Cmax, unless P = NP.

Proof. Consider instance with pj ≤ q(n) for all j ∈ [n]. Q := nq(n)
Run FPTAS with ε := 1/(Q + 1). OPT ≤ Q

I poly-time in input size, because 1/ε ≤ nq(n) + 1
I ALG ≤ (1 + ε)OPT < OPT+OPT /Q ≤ OPT+1

by integrality: ALG ≤ OPT.
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