Lecture: Approximation Algorithms

Jannik Matuschke

TUTT

November 7, 2018

Dynamic Programming Example II: Scheduling on Identical Parallel Machines

Scheduling on Parallel Machines

Input: *m* identical machines, *n* jobs with processing times p_1, \ldots, p_n Task: assign each job $j \in [n]$ to a machine $\sigma(j) \in [m]$ minimizing $C_{\max} := \max_{i \in [m]} \sum_{j: \sigma(j)=i} p_j$

Algorithm A(k)

$$j'$$
 long: $p_{j'} \geq \frac{1}{km} \sum_{j \in [n]} p_j$

2 For each short job *j*

Algorithm A(k)

$$j'$$
 long: $p_{j'} \ge \frac{1}{km} \sum_{j \in [n]} p_j$

Compute optimal schedule for long jobs. (complete enumeration)

2 For each short job *j*

Algorithm A(k)

$$j'$$
 long: $p_{j'} \geq \frac{1}{km} \sum_{j \in [n]} p_j$

Compute optimal schedule for long jobs. (complete enumeration)

2 For each short job *j*

Algorithm A(k)

$$j'$$
 long: $p_{j'} \ge \frac{1}{km} \sum_{j \in [n]} p_j$

Compute optimal schedule for long jobs. (complete enumeration)

2 For each short job j

Algorithm A(k)

$$j'$$
 long: $p_{j'} \ge \frac{1}{km} \sum_{j \in [n]} p_j$

Compute optimal schedule for long jobs. (complete enumeration)

2 For each short job *j*

Algorithm A(k)

$$j'$$
 long: $p_{j'} \ge \frac{1}{km} \sum_{j \in [n]} p_j$

Compute optimal schedule for long jobs. (complete enumeration)

2 For each short job *j*

Assign j to machine i with lowest load.

Theorem 5.5

A(k) is a (1+1/k)-approximation with running time $O(m^{km} + n)$.

Algorithm A'(k, T)

j long:
$$p_j \geq \frac{T}{k}$$

- 1 Schedule long jobs within (1 + 1/k)T(or find out that T < OPT and stop).
- 2 For each short job *j*

Algorithm A'(k, T)

j long:
$$p_j \geq \frac{T}{k}$$

- 1 Schedule long jobs within (1 + 1/k)T(or find out that T < OPT and stop).
- 2 For each short job j

Assign j to machine i with lowest load.

Theorem 5.6

If A'(k, T) computes a schedule, then it has makespan (1+1/k)T.

Algorithm A'(k, T)

 $j \text{ long: } p_j \geq \frac{T}{k}$ $\rightarrow B(k, T)$

- 1 Schedule long jobs within (1 + 1/k)T(or find out that T < OPT and stop).
- 2 For each short job j

Assign j to machine i with lowest load.

Theorem 5.6

If A'(k, T) computes a schedule, then it has makespan (1+1/k)T.

Subroutine for long jobs

Algorithm B(k, T)

only long jobs:
$$p_j \geq \frac{T}{k}$$

1
$$p'_j := \left\lfloor \frac{k^2 p_j}{T} \right\rfloor \cdot \frac{T}{k^2}$$
 for each j

- 2 Compute m' := min number of machines needed to schedule rounded long jobs within makespan T.
- 3 If $m' \leq m$ then return corresponding schedule.
- 4 Otherwise return "failed".

Subroutine for long jobs

Algorithm B(k, T)

only long jobs:
$$p_j \geq \frac{T}{k}$$

$$1 \quad p'_j := \left\lfloor \frac{k^2 p_j}{T} \right\rfloor \cdot \frac{T}{k^2} \text{ for each } j$$

- 2 Compute $m' := \min$ number of machines needed to schedule rounded long jobs within makespan T. \rightarrow DP
- 3 If $m' \leq m$ then return corresponding schedule.
- 4 Otherwise return "failed".

Lemma 5.7

If B(k, T) computes a schedule, then it has makespan (1+1/k)T. If B(k, T) returns "failed", then OPT > T.

Subroutine for long jobs

Algorithm B(k, T)

only long jobs:
$$p_j \geq \frac{T}{k}$$

$$1 \quad p'_j := \left\lfloor \frac{k^2 p_j}{T} \right\rfloor \cdot \frac{T}{k^2} \text{ for each } j$$

- 2 Compute $m' := \min$ number of machines needed to schedule rounded long jobs within makespan T. \rightarrow DP
- 3 If $m' \leq m$ then return corresponding schedule.
- 4 Otherwise return "failed".

Lemma 5.7

If B(k, T) computes a schedule, then it has makespan (1 + 1/k)T. If B(k, T) returns "failed", then OPT > T.

Lemma 5.8

$$B(k, T)$$
 runs in time $O(n^{k^2}(k+1)^{k^2})$.

Idea:

• only k^2 different job types $(p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\})$

- only k^2 different job types $(p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\})$
- *n_i*: number of jobs of type *i*

- only k^2 different job types $(p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\})$
- *n_i*: number of jobs of type *i*
- ► M(n₁,..., n_{k²}) := #machines needed to schedule instance defined by n₁,..., n_{k²}

- only k^2 different job types $(p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\})$
- *n_i*: number of jobs of type *i*
- ► M(n₁,..., n_{k²}) := #machines needed to schedule instance defined by n₁,..., n_{k²}

#instances
$$\leq n^{k^2}$$

- only k^2 different job types $(p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\})$
- *n_i*: number of jobs of type *i*
- ► M(n₁,..., n_{k²}) := #machines needed to schedule instance defined by n₁,..., n_{k²}
- $M(n_1,...,n_{k^2}) = 1 + \min_{s \in \mathcal{C}} M(n_1 s_1,...,n_{k^2} s_{k^2})$
- ▶ C := configurations (schedule *s_i* jobs of type *i* on the machine)

#instances
$$\leq n^{k^2}$$

- only k^2 different job types $(p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\})$
- *n_i*: number of jobs of type *i*
- ► M(n₁,..., n_{k²}) := #machines needed to schedule instance defined by n₁,..., n_{k²}
- $M(n_1,...,n_{k^2}) = 1 + \min_{s \in \mathcal{C}} M(n_1 s_1,...,n_{k^2} s_{k^2})$
- ▶ C := configurations (schedule *s_i* jobs of type *i* on the machine)

$$\#$$
instances $\leq n^{k^2}$ and $|\mathcal{C}| \leq (k+1)^{k^2}$

- ▶ only k^2 different job types $(p'_j \in \{i \cdot \frac{T}{k^2} : i \in [k^2]\})$
- *n_i*: number of jobs of type *i*
- ► M(n₁,..., n_{k²}) := #machines needed to schedule instance defined by n₁,..., n_{k²}
- $M(n_1,...,n_{k^2}) = 1 + \min_{s \in \mathcal{C}} M(n_1 s_1,...,n_{k^2} s_{k^2})$
- ▶ C := configurations (schedule *s_i* jobs of type *i* on the machine)

$$\# ext{instances} \leq n^{k^2} \quad ext{and} \quad |\mathcal{C}| \leq (k+1)^{k^2}$$
dynamic program: $n^{k^2}(k+1)^{k^2}$

Dynamic program: Pseudocode

Algorithm DP

1
$$M(0,...,0) := 0, Q := \{(0,...,0)\}$$

2 while $(Q \neq \emptyset)$
Let $q \in Q$ such that $M(q)$ is minimum.
for each $s \in C$ with $q_i + s_i \leq n$ for all i
if $M(q) + 1 < M(q + s)$ then
 $M(q + s) := M(q) + 1$
 $Q := Q \cup \{q + s\}$
end if
end for
 $Q := Q \setminus \{q\}$
3 Return $M(n_1,...,n_{k^2})$.

Algorithm A'(k, T)

 $j \text{ long: } p_j \geq \frac{T}{k}$ $\rightarrow B(k, T)$

- 1 Schedule long jobs within (1 + 1/k)T(or find out that T < OPT and stop).
- 2 For each short job j

Assign j to machine i with lowest load.

Theorem 5.9

If A'(k, T) computes a schedule, then it has makespan (1+1/k)T. A'(k, T) runs in time $O(n^{k^2}(k+1)^{k^2})$.

Algorithm A'(k, T)

 $j \text{ long: } p_j \geq \frac{T}{k}$ $\rightarrow B(k, T)$

- 1 Schedule long jobs within (1 + 1/k)T(or find out that T < OPT and stop).
- 2 For each short job j

Assign j to machine i with lowest load.

Theorem 5.9

If A'(k, T) computes a schedule, then it has makespan (1+1/k)T. A'(k, T) runs in time $O(n^{k^2}(k+1)^{k^2})$.

A'(k, T) is a (1 + 1/k)-relaxed decision procedure.

Can be turned into a (1+1/k)-approximation algorithm. (Exercise) PTAS: choose $k := \lceil 1/\varepsilon \rceil$

Theorem 5.10

There is a polynomial function q such that $P||C_{\max}$ is NP-hard even when restricted to instances with $p_j \leq q(n)$ for all j.

"
$$P||C_{max}$$
 is strongly *NP*-hard."

Theorem 5.10

There is a polynomial function q such that $P||C_{\max}$ is NP-hard even when restricted to instances with $p_j \leq q(n)$ for all j.

Corollary 5.11

There is no FPTAS for $P||C_{max}$, unless P = NP.

Theorem 5.10

There is a polynomial function q such that $P||C_{\max}$ is NP-hard even when restricted to instances with $p_j \leq q(n)$ for all j.

Corollary 5.11

There is no FPTAS for $P||C_{max}$, unless P = NP.

Proof. Consider instance with $p_j \le q(n)$ for all $j \in [n]$. Q := nq(n)Run FPTAS with $\varepsilon := 1/(Q+1)$. OPT $\le Q$

Theorem 5.10

There is a polynomial function q such that $P||C_{\max}$ is NP-hard even when restricted to instances with $p_j \leq q(n)$ for all j.

Corollary 5.11

There is no FPTAS for $P||C_{max}$, unless P = NP.

Proof. Consider instance with $p_j \le q(n)$ for all $j \in [n]$. Q := nq(n)Run FPTAS with $\varepsilon := 1/(Q+1)$. OPT $\le Q$

• poly-time in input size, because $1/\varepsilon \leq nq(n) + 1$

Theorem 5.10

There is a polynomial function q such that $P||C_{\max}$ is NP-hard even when restricted to instances with $p_j \leq q(n)$ for all j.

Corollary 5.11

There is no FPTAS for $P||C_{max}$, unless P = NP.

Proof. Consider instance with $p_j \le q(n)$ for all $j \in [n]$. Q := nq(n)Run FPTAS with $\varepsilon := 1/(Q+1)$. OPT $\le Q$

- poly-time in input size, because $1/\varepsilon \leq nq(n) + 1$
- ALG \leq $(1 + \varepsilon)$ OPT < OPT + OPT $/Q \leq$ OPT + 1

Theorem 5.10

There is a polynomial function q such that $P||C_{\max}$ is NP-hard even when restricted to instances with $p_j \leq q(n)$ for all j.

Corollary 5.11

There is no FPTAS for $P||C_{max}$, unless P = NP.

Proof. Consider instance with $p_j \le q(n)$ for all $j \in [n]$. Q := nq(n)Run FPTAS with $\varepsilon := 1/(Q+1)$. OPT $\le Q$

- ▶ poly-time in input size, because $1/\varepsilon \le nq(n) + 1$
- ► ALG \leq $(1 + \varepsilon)$ OPT < OPT + OPT $/Q \leq$ OPT + 1 by integrality: ALG \leq OPT.