
Jannik Matuschke

November 12, 2018

Lecture: Approximation AlgorithmsLecture: Approximation Algorithms

LP Rounding

LP Rounding

General idea:
1 formulation

formulate problem as an integer program

2 relaxation
drop integrality requirement → LP

3 rounding
solve LP and construct solution for original problem with

ALG ≤ αZ ∗ ≤ α OPT

LP Rounding

General idea:
1 formulation

formulate problem as an integer program

2 relaxation
drop integrality requirement → LP

3 rounding
solve LP and construct solution for original problem with

ALG ≤ αZ ∗ ≤ α OPT

LP Rounding

General idea:
1 formulation

formulate problem as an integer program

2 relaxation
drop integrality requirement → LP

3 rounding
solve LP and construct solution for original problem with

ALG ≤ αZ ∗ ≤ α OPT

LP Rounding:
Prize-collecting Steiner Tree

Prize-collecting Steiner Tree

Input: graph G = (V ∪ {r},E), distances

∗

d : E → R+,
penalties π : V → R+

Task: find U ⊆ V and a tree T spanning U ∪ {r}
minimizing

∑
e∈T d(e) +

∑
v∈V\U π(v)

3
2

1.52.531

3
1

3 2

2

∗w.l.o.g.: G is complete and d is metric

Prize-collecting Steiner Tree

Input: graph G = (V ∪ {r},E), distances

∗

d : E → R+,
penalties π : V → R+

Task: find U ⊆ V and a tree T spanning U ∪ {r}
minimizing

∑
e∈T d(e) +

∑
v∈V\U π(v)

3
2

1.52.531

3
1

3 2

2

∗w.l.o.g.: G is complete and d is metric

Prize-collecting Steiner Tree

Input: graph G = (V ∪ {r},E), distances∗ d : E → R+,
penalties π : V → R+

Task: find U ⊆ V and a tree T spanning U ∪ {r}
minimizing

∑
e∈T d(e) +

∑
v∈V\U π(v)

3
2

1.52.531

3
1

3 2

2

∗w.l.o.g.: G is complete and d is metric

LP relaxation

3

2 1.5

2.531

3
1

3 2

2

S

variables:
x(e) = 1 ⇔ e ∈ T
y(v) = 1 ⇔ v ∈ U

Z ∗ :=

min
∑
e∈E

d(e)x(e) +
∑
v∈V

π(v)(1− y(v))

s.t.
∑

e∈δ(S)
x(e) ≥ y(v) ∀ S ⊆ V , ∀ v ∈ S

x(e) ∈ {0, 1} ∀ e ∈ E
y(v) ∈ {0, 1} ∀ v ∈ V

LP relaxation

3

2 1.5

2.531

3
1

3 2

2

S

variables:
x(e) = 1 ⇔ e ∈ T
y(v) = 1 ⇔ v ∈ U

Z ∗ :=

min
∑
e∈E

d(e)x(e) +
∑
v∈V

π(v)(1− y(v))

s.t.
∑

e∈δ(S)
x(e) ≥ y(v) ∀ S ⊆ V , ∀ v ∈ S

x(e) ∈ {0, 1} ∀ e ∈ E
y(v) ∈ {0, 1} ∀ v ∈ V

LP relaxation

3

2 1.5

2.531

3
1

3 2

2

S

variables:
x(e) = 1 ⇔ e ∈ T
y(v) = 1 ⇔ v ∈ U

Z ∗ := min
∑
e∈E

d(e)x(e) +
∑
v∈V

π(v)(1− y(v))

s.t.
∑

e∈δ(S)
x(e) ≥ y(v) ∀ S ⊆ V , ∀ v ∈ S

x(e) ≥ 0 ∀ e ∈ E
y(v) ≥ 0 ∀ v ∈ V

A 3-approximation algorithm
Algorithm D (Deterministic Rounding)

1 Compute optimal solution (x∗, y∗) to LP.
2 Let U := {v ∈ V : y∗(v) ≥ α}.
3 Let T be minimum spanning tree on U ∪ {r}.
4 Return T and U.

Claim 1: d(T) ≤ 2
α
·
∑
e∈E

d(e)x∗(e)

Claim 2: π(V \ U) ≤ 1
1− α ·

∑
v∈V

π(v)(1− y∗(e))

Theorem 6.1
Algorithm D is a 3-approximation algorithm for Prize-collecting
Steiner Tree (when setting α = 2/3).

A 3-approximation algorithm
Algorithm D (Deterministic Rounding)

1 Compute optimal solution (x∗, y∗) to LP.
2 Let U := {v ∈ V : y∗(v) ≥ α}.
3 Let T be minimum spanning tree on U ∪ {r}.
4 Return T and U.

Claim 1: d(T) ≤ 2
α
·
∑
e∈E

d(e)x∗(e)

Claim 2: π(V \ U) ≤ 1
1− α ·

∑
v∈V

π(v)(1− y∗(e))

Theorem 6.1
Algorithm D is a 3-approximation algorithm for Prize-collecting
Steiner Tree (when setting α = 2/3).

A 3-approximation algorithm
Algorithm D (Deterministic Rounding)

1 Compute optimal solution (x∗, y∗) to LP.
2 Let U := {v ∈ V : y∗(v) ≥ α}.
3 Let T be minimum spanning tree on U ∪ {r}.
4 Return T and U.

Claim 1: d(T) ≤ 2
α
·
∑
e∈E

d(e)x∗(e)

Claim 2: π(V \ U) ≤ 1
1− α ·

∑
v∈V

π(v)(1− y∗(e))

Theorem 6.1
Algorithm D is a 3-approximation algorithm for Prize-collecting
Steiner Tree (when setting α = 2/3).

Improved approximation

Algorithm B (Best of Many)
1 Compute optimal solution (x∗, y∗) to LP.
2 Run Algorithm D for every α ∈ {y∗(v) : v ∈ V }.
3 Return best solution found.

Algorithm R (Randomized Rounding)
Choose α uniformly at random from [γ, 1] and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R.
(randomized analysis)

Theorem 6.2
Algorithm R is a randomized 2.54-approximation algorithm for
Prize-collecting Steiner Tree (when setting γ = exp(−1/2)).

Corollary 6.3
Algorithm B is a 2.54-approximation algorithm for PC-ST.

Improved approximation

Algorithm B (Best of Many)
1 Compute optimal solution (x∗, y∗) to LP.
2 Run Algorithm D for every α ∈ {y∗(v) : v ∈ V }.
3 Return best solution found.

Algorithm R (Randomized Rounding)
Choose α uniformly at random from [γ, 1] and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R.
(randomized analysis)

Theorem 6.2
Algorithm R is a randomized 2.54-approximation algorithm for
Prize-collecting Steiner Tree (when setting γ = exp(−1/2)).

Corollary 6.3
Algorithm B is a 2.54-approximation algorithm for PC-ST.

Improved approximation

Algorithm B (Best of Many)
1 Compute optimal solution (x∗, y∗) to LP.
2 Run Algorithm D for every α ∈ {y∗(v) : v ∈ V }.
3 Return best solution found.

Algorithm R (Randomized Rounding)
Choose α uniformly at random from [γ, 1] and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R.
(randomized analysis)

Theorem 6.2
Algorithm R is a randomized 2.54-approximation algorithm for
Prize-collecting Steiner Tree (when setting γ = exp(−1/2)).

Corollary 6.3
Algorithm B is a 2.54-approximation algorithm for PC-ST.

LP Rounding:
Uncapacitated Facility Location

(Metric) Uncapacitated Facility Location

Input: facilities F , clients C , opening cost fi for i ∈ F ,
metric distances dij for i ∈ F and j ∈ C

Task: find S ⊆ F , minimizing
∑

i∈S fi +
∑

j∈C mini∈S dij

j

i ′j ′

i

metric: dij ≤ dij′ + di ′j′ + di ′j

(Metric) Uncapacitated Facility Location

Input: facilities F , clients C , opening cost fi for i ∈ F ,
metric distances dij for i ∈ F and j ∈ C

Task: find S ⊆ F , minimizing
∑

i∈S fi +
∑

j∈C mini∈S dij

j

i ′j ′

i

metric: dij ≤ dij′ + di ′j′ + di ′j

(Metric) Uncapacitated Facility Location

Input: facilities F , clients C , opening cost fi for i ∈ F ,
metric distances dij for i ∈ F and j ∈ C

Task: find S ⊆ F , minimizing
∑

i∈S fi +
∑

j∈C mini∈S dij

j

i ′j ′

i

metric: dij ≤ dij′ + di ′j′ + di ′j

(Metric) Uncapacitated Facility Location

Input: facilities F , clients C , opening cost fi for i ∈ F ,
metric distances dij for i ∈ F and j ∈ C

Task: find S ⊆ F , minimizing
∑

i∈S fi +
∑

j∈C mini∈S dij

j

i ′j ′

i

metric: dij ≤ dij′ + di ′j′ + di ′j

LP relaxation
variables:
xij = 1 ⇔ i serves j
yi = 1 ⇔ i ∈ S

min
∑
i∈F

∑
j∈C

dijxij +
∑
i∈F

fiyi

s.t.
∑
i∈F

xij = 1 ∀ j ∈ C

yi − xij ≥ 0 ∀ i ∈ F , j ∈ C
xij ∈ {0, 1} ∀ i ∈ F , j ∈ C
yi ∈ {0, 1} ∀ i ∈ F

0.3
0.3

0.3

0

0.3

0.7
0.7

0.7

0.3

1 0.7

1

0.7
1

LP relaxation
variables:
xij = 1 ⇔ i serves j
yi = 1 ⇔ i ∈ S

min
∑
i∈F

∑
j∈C

dijxij +
∑
i∈F

fiyi

s.t.
∑
i∈F

xij = 1 ∀ j ∈ C

yi − xij ≥ 0 ∀ i ∈ F , j ∈ C
xij ∈ {0, 1} ∀ i ∈ F , j ∈ C
yi ∈ {0, 1} ∀ i ∈ F

0.3
0.3

0.3

0

0.3

0.7
0.7

0.7

0.3

1 0.7

1

0.7
1

LP relaxation
variables:
xij = 1 ⇔ i serves j
yi = 1 ⇔ i ∈ S

min
∑
i∈F

∑
j∈C

dijxij +
∑
i∈F

fiyi

s.t.
∑
i∈F

xij = 1 ∀ j ∈ C

yi − xij ≥ 0 ∀ i ∈ F , j ∈ C
xij ≥ 0 ∀ i ∈ F , j ∈ C
yi ≥ 0 ∀ i ∈ F

0.3
0.3

0.3

0

0.3

0.7
0.7

0.7

0.3

1 0.7

1

0.7
1

LP relaxation
variables:
xij = 1 ⇔ i serves j
yi = 1 ⇔ i ∈ S

min
∑
i∈F

∑
j∈C

dijxij +
∑
i∈F

fiyi

s.t.
∑
i∈F

xij = 1 ∀ j ∈ C

yi − xij ≥ 0 ∀ i ∈ F , j ∈ C
xij ≥ 0 ∀ i ∈ F , j ∈ C
yi ≥ 0 ∀ i ∈ F

0.3
0.3

0.3

0

0.3

0.7
0.7

0.7

0.3

1 0.7

1

0.7
1

LP relaxation
variables:
xij = 1 ⇔ i serves j
yi = 1 ⇔ i ∈ S

min
∑
i∈F

∑
j∈C

dijxij +
∑
i∈F

fiyi

s.t.
∑
i∈F

xij = 1 ∀ j ∈ C

yi − xij ≥ 0 ∀ i ∈ F , j ∈ C
xij ≥ 0 ∀ i ∈ F , j ∈ C
yi ≥ 0 ∀ i ∈ F

0.3
0.3

0.3

0

0.3

0.7
0.7

0.7

0.3

1 0.7

1

0.7
1

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Idea: For each j ∈ C , open i ∈ Nj minimizing dij .

 ignores opening costs

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Idea: For each j ∈ C , open i ∈ Nj minimizing dij .
 ignores opening costs

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Idea: For each j ∈ C , open i ∈ Nj minimizing fi .

 opening costs can stack up

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Idea: For each j ∈ C , open i ∈ Nj minimizing fi .
 opening costs can stack up

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Idea: Let X ⊆ C with Nj ∩ Nj′ = ∅ for j , j ′ ∈ X . For each j ∈ X ,
open i ∈ Nj minimizing fi .

 Connection costs of C \ X?

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Idea: Let X ⊆ C with Nj ∩ Nj′ = ∅ for j , j ′ ∈ X . For each j ∈ X ,
open i ∈ Nj minimizing fi .

 Connection costs of C \ X?

Ideas

Nj := {i ∈ F : x∗ij > 0}
N2

j := {j ′ ∈ C : Nj ∩ Nj′ 6= ∅}

Idea: Let X ⊆ C with Nj ∩ Nj′ = ∅ for j , j ′ ∈ X . For each j ∈ X ,
open i ∈ Nj minimizing fi . Connection costs of C \ X?

The algorithm
Algorithm 1 (Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅)

Choose j ∈ C ′ minimizing v∗j .
Choose i ∈ Nj minimizing fi .
C ′ := C ′ \ N2

j and S := S ∪ {i}.
4 Return S.

j

i

j

k

i

k

Theorem 6.4
Algorithm 1 is a 4-approximation algorithm for Uncapacitated
Facility Location.

The algorithm
Algorithm 1 (Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅)

Choose j ∈ C ′ minimizing v∗j .
Choose i ∈ Nj minimizing fi .
C ′ := C ′ \ N2

j and S := S ∪ {i}.
4 Return S.

j

i

j

k

i

k

Theorem 6.4
Algorithm 1 is a 4-approximation algorithm for Uncapacitated
Facility Location.

The algorithm
Algorithm 1 (Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅)

Choose j ∈ C ′ minimizing v∗j .
Choose i ∈ Nj minimizing fi .
C ′ := C ′ \ N2

j and S := S ∪ {i}.
4 Return S.

j

i

jk

ik

Theorem 6.4
Algorithm 1 is a 4-approximation algorithm for Uncapacitated
Facility Location.

Improved algorithm
Algorithm 2 (Improved Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅)

∆j :=
∑

i∈F dijxij

Choose j ∈ C ′ minimizing v∗j .
Choose i ∈ Nj minimizing fi +

∑
j′∈N2

j
dij′ .

C ′ := C ′ \ N2
j and S := S ∪ {i}.

4 Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.

Improved algorithm
Algorithm 2 (Improved Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅) ∆j :=

∑
i∈F dijxij

Choose j ∈ C ′ minimizing v∗j + ∆j .
Choose i ∈ Nj minimizing fi +

∑
j′∈N2

j
dij′ .

C ′ := C ′ \ N2
j and S := S ∪ {i}.

4 Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.

Improved algorithm
Algorithm 3 (Randomized Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅) ∆j :=

∑
i∈F dijxij

Choose j ∈ C ′ minimizing v∗j + ∆j .
Choose i ∈ Nj randomly according to probabilities x∗ij .
C ′ := C ′ \ N2

j and S := S ∪ {i}.
4 Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.

Improved algorithm
Algorithm 3 (Randomized Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅) ∆j :=

∑
i∈F dijxij

Choose j ∈ C ′ minimizing v∗j + ∆j .
Choose i ∈ Nj randomly according to probabilities x∗ij .
C ′ := C ′ \ N2

j and S := S ∪ {i}.
4 Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.

Today you learnt ...

solve LP and round (randomly)

