Lecture: Approximation Algorithms

Jannik Matuschke

November 12, 2018
e e

LP Rounding

LP Rounding

General idea:

formulation . .
formulate problem as an integer program

relaxation
drop integrality requirement — LP

rounding

solve LP and construct solution for original problem with

ALG < aZ* < aOPT

LP Rounding

General idea:

formulation
formulate problem as an integer program

relaxation
drop integrality requirement — LP

rounding

solve LP and construct solution for original problem with

ALG < aZ" < aOPT

LP Rounding

General idea:

formulation
formulate problem as an integer program

relaxation
drop integrality requirement — LP

rounding

solve LP and construct solution for original problem with

ALG < aZ" < aOPT

LP Rounding:
Prize-collecting Steiner Tree

Prize-collecting Steiner Tree

Input: graph G = (V U{r},E), distances d: E — Ry,
penalties 7 : V — R

Task: find U C V and a tree T spanning UU {r}
minimizing >~ c 7 d(e) + X cv\u (V)

Prize-collecting Steiner Tree

Input: graph G = (V U{r},E), distances d: E — Ry,
penalties 7 : V — R

Task: find U C V and a tree T spanning UU {r}
minimizing >~ c 7 d(e) + X cv\u (V)

N
LNy

®
(>-\4./ °

Prize-collecting Steiner Tree

Input: graph G = (V U{r},E), distances” d: E — Ry,
penalties 7 : V — R

Task: find U C V and a tree T spanning UU {r}
minimizing >~ c 7 d(e) + X cv\u (V)

\1\ Tooe
®
PRV

» .

“w.l.o.g.: G is complete and d is metric

LP relaxation

variables:

x(e)=1 < ecT
y(v)=1 & veU

min " d(e)x(e) + Y w(v)(1 - y(v))

eckE veV
s.t. Zx(e) > y(v) ¥vSCV,VvesS
ecd(S)
x(e) €{0,1} VeeE

y(v) €{0,1} VveV

LP relaxation

variables:

x(e)=1 < ecT
y(v)=1 & veU

eckE veV
s.t. Zx(e) > y(v) ¥vSCV,VvesS
ecd(S)
x(e) €{0,1} VecE

y(v) €{0,1} VveV

LP relaxation

variables:
x(e)=1 < ecT
y(v)=1 & veU

Z" = min Z d(e)x(e) + Z m(v)(1 —y(v))

ecE veVv

s.t Zx(e) > y(v) VSCV,VveS
ecd(S)

x(e) > VecE

y(v) > VveV

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)
Compute optimal solution (x*, y*) to LP.
Let U:={veV:y*(v)>a}l
Let T be minimum spanning tree on U U {r}.
Return T and U.

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

Compute optimal solution (x*, y*) to LP.

Let U:={veV:y*(v)>a}l

Let T be minimum spanning tree on U U {r}.
Return T and U.

Claim 1: d(T) < — Zd

eeE
Claim 2: =(V\ V)

vev

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

Compute optimal solution (x*,y*) to LP.

Let U:={veV:y*(v)>a}l

Let T be minimum spanning tree on U U {r}.
Return T and U.

Claim1l: d(T7) < — Zd

eGE
Claim 2: =(V\ V)

veVv

Theorem 6.1

Algorithm D is a 3-approximation algorithm for Prize-collecting
Steiner Tree (when setting oo = 2/3).

Improved approximation

Algorithm B (Best of Many)
Compute optimal solution (x*,y*) to LP.
Run Algorithm D for every o € {y*(v) : v € V}.
Return best solution found.

Improved approximation

Algorithm B (Best of Many)

Compute optimal solution (x*,y*) to LP.
Run Algorithm D for every o € {y*(v) : v € V}.
Return best solution found.

Algorithm R (Randomized Rounding)
Choose a uniformly at random from [v,1] and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R.
(randomized analysis)

Improved approximation

Algorithm B (Best of Many)

Compute optimal solution (x*,y*) to LP.
Run Algorithm D for every o € {y*(v) : v € V}.
Return best solution found.

Algorithm R (Randomized Rounding)
Choose a uniformly at random from [v,1] and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R.

(randomized analysis)

Theorem 6.2

Algorithm R is a randomized 2.54-approximation algorithm for
Prize-collecting Steiner Tree (when setting v = exp(—1/2)).

Corollary 6.3

Algorithm B is a 2.54-approximation algorithm for PC-ST.

LP Rounding:
Uncapacitated Facility Location

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f; for i € F,
metric distances djj for i € F and j € C

Task: find S C F, minimizing > ;cs fi + > jcc Minies djj

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f; for i € F,
metric distances djj for i € F and j € C

Task: find S C F, minimizing > ;cs fi + > jcc Minies djj

® ' il

metric: d,J < d,_// —+ di’j’ —+ d,'/j

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f; for i € F,
metric distances djj for i € F and j € C

Task: find S C F, minimizing > ;cs fi + > jcc Minies djj

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f; for i € F,
metric distances djj for i € F and j € C

Task: find S C F, minimizing > ;cs fi + > jcc Minies djj

LP relaxation
min > dpxg + Y fiyi variables:

ieF jeC i€F xj =1 < iserves j
s.t. dox =1 VjecC yi=1< ieS
icF

yi—xj > 0 VieF,jeC
xj €{0,1} VieF,jeC
yi €{0,1} VieF

LP relaxation
min > dpxg + Y fiyi variables:

ieF jeC i€F xj =1 < iserves j
s.t. dox =1 VjecC yi=1< ieS
icF

yi—xj = 0 VieF,jeC
x; {01} VieF,jeC
yi €{0,1} VieF

LP relaxation
min > dixg + Y fiyi variables:

i€F jeC ieF xj =1 < iserves j
s.t. d oxj =1 VjeC yi=1< ieS
icF
yi—xj >0 VieF,jecC
x; > 0 VieF,jeC
yi = 0 VieF

LP relaxation
min > dixg + Y fiyi variables:

ieF jeC i€F xj =1 < iserves j
s.t. inj =1 VJEC yi:]_<:>,'€5

ieF
yi—xj >0 VieF,jecC

xj =2 0 VieF,jeC

yi >0 VieF

[) o

o
] (] L]
o
] o

LP relaxation
min > dixg + Y fiyi variables:

icF jeC icF xj =1 & iserves j
s.t. d oxj =1 VjeC yi=1< ieS
icF
yi—xj >0 VieF,jecC
xj >0 VieF,jeC
yi > 0 VieF

| /\/\‘0 A
— Q- (o) be _OA
0.7
1
S 0.3 s
Q- Q3 ¢

l')\o/ - ~3

Ideas

| |||

Ideas

Ideas

L]
N;:={i€eF : x;>0}

Idea: For each j € C, open i € N; minimizing dj;.

Ideas

L]
N;:={i€eF : x;>0}

Idea: For each j € C, open i € N; minimizing dj;.
~~ ignores opening costs

Ideas

L]
N;:={i€eF : x;>0}

Idea: For each j € C, open i € N; minimizing f;.

Ideas

L]
N;:={i€eF : x;>0}

Idea: For each j € C, open i € N; minimizing f;.
~» opening costs can stack up

Ideas

[]
N;:={i€eF : x;>0}

Idea: Let X C C with N; NN =0 for j,j' € X. For each j € X,
open i € N; minimizing f;.

Ideas

[]
N;:={i€eF : x;>0}

Idea: Let X C C with N; NN =0 for j,j' € X. For each j € X,
open i € N; minimizing f;.

Ideas

[]
N;:={i€eF : x;>0}

Idea: Let X C C with N; NN =0 for j,j' € X. For each j € X,
open i € N; minimizing f;. ~~ Connection costs of C\ X7

The algorithm

Algorithm 1 (Deterministic Rounding)
Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S := 0, C' := C.

while (C' # 0)
Choose j € C' minimizing v;".
Choose i € N; minimizing f;.
C':=C'\N?and S:=SU{i}.

Return S.

The algorithm

Algorithm 1 (Deterministic Rounding)
Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S := 0, C' := C.

while (C' # 0)
Choose j € C' minimizing v;".
Choose i € N; minimizing f;.
C':=C'\N?and S:=SU{i}.

Return S.

Theorem 6.4

Algorithm 1 is a 4-approximation algorithm for Uncapacitated
Facility Location.

The algorithm

Algorithm 1 (Deterministic Rounding)
Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S := 0, C' := C.

while (C' # 0)
Choose j € C' minimizing v;".
Choose i € N; minimizing f;.
C':=C'\N?and S:=SU{i}.

Return S.

Theorem 6.4

Algorithm 1 is a 4-approximation algorithm for Uncapacitated
Facility Location.

Improved algorithm

Algorithm 2 (Improved Deterministic Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S := 0, C' := C.

while (C’ # 0)
Choose j € C' minimizing v;".
Choose i € N; minimizing f; + ZJ’EN/? dijr.

— 2 — ;

C':=C'\ N and S :=SU{i}.

Return S.

Improved algorithm

Algorithm 2 (Improved Deterministic Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.
Initialize S := 0, C' := C.
while (C’ # 0) D=k dix;
Choose j € C' minimizing v/ + A
Choose i € N; minimizing f; + ZJ’EN/? dijr.
— 2 — ;
C':=C'\ N and S :=SU{i}.
Return S.

Improved algorithm

Algorithm 3 (Randomized Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S :=0, C' .= C.

while (C' # 0) Aj =Y icr dixi
Choose j € C' minimizing v/ + A
Choose i € N; randomly according to probabilities Xjj.-
C':=C'\N?and S:=SU{i}.

Return S.

Improved algorithm

Algorithm 3 (Randomized Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S :=0, C' .= C.

while (C' # 0) Aj =Y icr dixi
Choose j € C' minimizing v/ + A
Choose i € N; randomly according to probabilities Xjj.-
C':=C'\N?and S:=SU{i}.

Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.

Today you learnt ...

solve LP and round (randomly)

