Lecture: Approximation Algorithms

Jannik Matuschke

TUTT

November 12, 2018

General idea:

1 formulation • formulate problem as an integer program

2 relaxation

drop integrality requirement \rightarrow LP

rounding

solve LP and construct solution for original problem with

$\mathsf{ALG} \leq \alpha Z^* \leq \alpha \, \mathsf{OPT}$

General idea:

1 formulation

formulate problem as an integer program

2 relaxation

drop integrality requirement $\rightarrow \mathsf{LP}$

rounding

solve LP and construct solution for original problem with

$\mathsf{ALG} \leq \alpha Z^* \leq \alpha \, \mathsf{OPT}$

General idea:

1 formulation

formulate problem as an integer program

2 relaxation

drop integrality requirement $\rightarrow \mathsf{LP}$

rounding

solve LP and construct solution for original problem with

$\mathsf{ALG} \leq \alpha Z^* \leq \alpha \operatorname{OPT}$

LP Rounding: Prize-collecting Steiner Tree

Prize-collecting Steiner Tree

Input: graph $G = (V \cup \{r\}, E)$, distances $d : E \to \mathbb{R}_+$, penalties $\pi : V \to \mathbb{R}_+$

Task: find $U \subseteq V$ and a tree T spanning $U \cup \{r\}$ minimizing $\sum_{e \in T} d(e) + \sum_{v \in V \setminus U} \pi(v)$

Prize-collecting Steiner Tree

Input: graph $G = (V \cup \{r\}, E)$, distances $d : E \to \mathbb{R}_+$, penalties $\pi : V \to \mathbb{R}_+$

Task: find $U \subseteq V$ and a tree T spanning $U \cup \{r\}$ minimizing $\sum_{e \in T} d(e) + \sum_{v \in V \setminus U} \pi(v)$

Prize-collecting Steiner Tree

Input: graph $G = (V \cup \{r\}, E)$, distances^{*} $d : E \to \mathbb{R}_+$, penalties $\pi : V \to \mathbb{R}_+$

Task: find $U \subseteq V$ and a tree T spanning $U \cup \{r\}$ minimizing $\sum_{e \in T} d(e) + \sum_{v \in V \setminus U} \pi(v)$

*w.l.o.g.: G is complete and d is metric

$$\begin{array}{ll} \min & \sum_{e \in E} d(e) x(e) \ + \ \sum_{v \in V} \pi(v)(1 - y(v)) \\ \text{s.t.} & \sum_{e \in \delta(S)} x(e) \ \ge \ y(v) \quad \forall \ S \subseteq V, \ \forall \ v \in S \\ & x(e) \ \in \{0,1\} \qquad \qquad \forall \ e \in E \\ & y(v) \ \in \{0,1\} \qquad \qquad \forall \ v \in V \end{array}$$

$$\begin{array}{ll} \min & \sum_{e \in E} d(e) x(e) \ + \ \sum_{v \in V} \pi(v)(1 - y(v)) \\ \text{s.t.} & \sum_{e \in \delta(S)} x(e) \ \ge \ y(v) \quad \forall \ S \subseteq V, \ \forall \ v \in S \\ & x(e) \ \in \{0,1\} \qquad \qquad \forall \ e \in E \\ & y(v) \ \in \{0,1\} \qquad \qquad \forall \ v \in V \end{array}$$

$$Z^* := \min \sum_{e \in E} d(e)x(e) + \sum_{v \in V} \pi(v)(1 - y(v))$$

s.t.
$$\sum_{e \in \delta(S)} x(e) \ge y(v) \quad \forall \ S \subseteq V, \ \forall \ v \in S$$
$$x(e) \ge 0 \qquad \forall \ e \in E$$
$$y(v) \ge 0 \qquad \forall \ v \in V$$

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

1 Compute optimal solution (x^*, y^*) to LP.

2 Let
$$U := \{ v \in V : y^*(v) \ge \alpha \}.$$

- 3 Let T be minimum spanning tree on $U \cup \{r\}$.
- 4 Return T and U.

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

Compute optimal solution
$$(x^*, y^*)$$
 to LP.

2 Let
$$U := \{ v \in V : y^*(v) \ge \alpha \}.$$

3 Let T be minimum spanning tree on $U \cup \{r\}$.

4 Return T and U.

$$\begin{array}{lll} \text{Claim 1:} & d(T) &\leq & \displaystyle\frac{2}{\alpha} \cdot \sum_{e \in E} d(e) x^*(e) \\ \text{Claim 2:} & \pi(V \setminus U) &\leq & \displaystyle\frac{1}{1 - \alpha} \cdot \sum_{v \in V} \pi(v) (1 - y^*(e)) \end{array}$$

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

Compute optimal solution
$$(x^*, y^*)$$
 to LP.

2 Let
$$U := \{ v \in V : y^*(v) \ge \alpha \}.$$

3 Let T be minimum spanning tree on $U \cup \{r\}$.

4 Return T and U.

$$\begin{array}{lll} \text{Claim 1:} & d(T) &\leq & \displaystyle\frac{2}{\alpha} \cdot \sum_{e \in E} d(e) x^*(e) \\ \text{Claim 2:} & \pi(V \setminus U) &\leq & \displaystyle\frac{1}{1 - \alpha} \cdot \sum_{v \in V} \pi(v) (1 - y^*(e)) \end{array}$$

Theorem 6.1

Algorithm D is a 3-approximation algorithm for Prize-collecting Steiner Tree (when setting $\alpha = 2/3$).

Improved approximation

Algorithm B (Best of Many)

- 1 Compute optimal solution (x^*, y^*) to LP.
- 2 Run Algorithm *D* for every $\alpha \in \{y^*(v) : v \in V\}$.
- 3 Return best solution found.

Improved approximation

Algorithm B (Best of Many)

- 1 Compute optimal solution (x^*, y^*) to LP.
- 2 Run Algorithm *D* for every $\alpha \in \{y^*(v) : v \in V\}$.
- 3 Return best solution found.

Algorithm R (Randomized Rounding)

Choose α uniformly at random from $[\gamma,1]$ and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R. (randomized analysis)

Improved approximation

Algorithm B (Best of Many)

- 1 Compute optimal solution (x^*, y^*) to LP.
- 2 Run Algorithm *D* for every $\alpha \in \{y^*(v) : v \in V\}$.
- 3 Return best solution found.

Algorithm R (Randomized Rounding)

Choose α uniformly at random from $[\gamma,1]$ and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R. (randomized analysis)

Theorem 6.2

Algorithm R is a randomized 2.54-approximation algorithm for Prize-collecting Steiner Tree (when setting $\gamma = \exp(-1/2)$).

Corollary 6.3

Algorithm B is a 2.54-approximation algorithm for PC-ST.

LP Rounding: Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f_i for $i \in F$, metric distances d_{ij} for $i \in F$ and $j \in C$ Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_i + \sum_{i \in C} \min_{i \in S} d_{ij}$

Input: facilities F, clients C, opening cost f_i for $i \in F$, metric distances d_{ij} for $i \in F$ and $j \in C$

Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_i + \sum_{j \in C} \min_{i \in S} d_{ij}$

metric: $d_{ij} \leq d_{ij'} + d_{i'j'} + d_{i'j}$

Input: facilities F, clients C, opening cost f_i for $i \in F$, metric distances d_{ij} for $i \in F$ and $j \in C$ Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_i + \sum_{i \in C} \min_{i \in S} d_{ij}$

Input: facilities F, clients C, opening cost f_i for $i \in F$, metric distances d_{ij} for $i \in F$ and $j \in C$ Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_i + \sum_{i \in C} \min_{i \in S} d_{ij}$

$$\begin{array}{rll} \min & \sum_{i \in F} \sum_{j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ \text{s.t.} & \sum_{i \in F} x_{ij} = 1 & \forall j \in C \\ & y_i - x_{ij} \geq 0 & \forall i \in F, j \in C \\ & x_{ij} \geq 0 & \forall i \in F, j \in C \\ & y_i \geq 0 & \forall i \in F \end{array}$$

variables:

 $x_{ij} = 1 \iff i \text{ serves } j$ $y_i = 1 \iff i \in S$

variables: $x_{ij} = 1 \iff i$ serves j $y_i = 1 \iff i \in S$

$$\begin{array}{rll} \min & \sum_{i \in F} \sum_{j \in C} d_{ij} x_{ij} + \sum_{i \in F} f_i y_i \\ \text{s.t.} & \sum_{i \in F} x_{ij} = 1 & \forall j \in C \\ & y_i - x_{ij} \geq 0 & \forall i \in F, j \in C \\ & x_{ij} \geq 0 & \forall i \in F, j \in C \\ & y_i > 0 & \forall i \in F \end{array}$$

variables: $x_{ij} = 1 \Leftrightarrow i \text{ serves } j$ $y_i = 1 \Leftrightarrow i \in S$

Idea: For each $j \in C$, open $i \in N_j$ minimizing d_{ij} .

Idea: For each $j \in C$, open $i \in N_j$ minimizing d_{ij} . \rightsquigarrow ignores opening costs

Idea: For each $j \in C$, open $i \in N_j$ minimizing f_i .

Idea: For each $j \in C$, open $i \in N_j$ minimizing f_i . \rightsquigarrow opening costs can stack up

Idea: Let $X \subseteq C$ with $N_j \cap N_{j'} = \emptyset$ for $j, j' \in X$. For each $j \in X$, open $i \in N_j$ minimizing f_i .

Idea: Let $X \subseteq C$ with $N_j \cap N_{j'} = \emptyset$ for $j, j' \in X$. For each $j \in X$, open $i \in N_j$ minimizing f_i .

Idea: Let $X \subseteq C$ with $N_j \cap N_{j'} = \emptyset$ for $j, j' \in X$. For each $j \in X$, open $i \in N_j$ minimizing f_i . \rightsquigarrow Connection costs of $C \setminus X$?

The algorithm

Algorithm 1 (Deterministic Rounding)

- Compute optimal solutions (x*, y*) and (v*, w*) to LP relaxation and its dual.
- 2 Initialize $S := \emptyset$, C' := C. 3 while $(C' \neq \emptyset)$ Choose $j \in C'$ minimizing v_j^* . Choose $i \in N_j$ minimizing f_i . $C' := C' \setminus N_j^2$ and $S := S \cup \{i\}$.

4 Return S.

The algorithm

Algorithm 1 (Deterministic Rounding)

- 1 Compute optimal solutions (x^*, y^*) and (v^*, w^*) to LP relaxation and its dual.
- 2 Initialize $S := \emptyset$, C' := C. 3 while $(C' \neq \emptyset)$ Choose $j \in C'$ minimizing v_j^* . Choose $i \in N_j$ minimizing f_i . $C' := C' \setminus N_j^2$ and $S := S \cup \{i\}$.

4 Return S.

Theorem 6.4

Algorithm 1 is a 4-approximation algorithm for Uncapacitated Facility Location.

The algorithm

Algorithm 1 (Deterministic Rounding)

- 1 Compute optimal solutions (x^*, y^*) and (v^*, w^*) to LP relaxation and its dual.
- 2 Initialize $S := \emptyset$, C' := C. 3 while $(C' \neq \emptyset)$ Choose $j \in C'$ minimizing v_j^* . Choose $i \in N_j$ minimizing f_i . $C' := C' \setminus N_j^2$ and $S := S \cup \{i\}$.

4 Return S.

Theorem 6.4

Algorithm 1 is a 4-approximation algorithm for Uncapacitated Facility Location.

Algorithm 2 (Improved Deterministic Rounding)

- 1 Compute optimal solutions (x^*, y^*) and (v^*, w^*) to LP relaxation and its dual.
- 2 Initialize $S := \emptyset$, C' := C. 3 while $(C' \neq \emptyset)$ Choose $j \in C'$ minimizing v_j^* . Choose $i \in N_j$ minimizing $f_i + \sum_{j' \in N_j^2} d_{ij'}$. $C' := C' \setminus N_j^2$ and $S := S \cup \{i\}$. 4 Return *S*.

Algorithm 2 (Improved Deterministic Rounding)

- 1 Compute optimal solutions (x^*, y^*) and (v^*, w^*) to LP relaxation and its dual.
- 2 Initialize $S := \emptyset$, C' := C. 3 while $(C' \neq \emptyset)$ Choose $j \in C'$ minimizing $v_j^* + \Delta_j$. Choose $i \in N_j$ minimizing $f_i + \sum_{j' \in N_j^2} d_{ij'}$. $C' := C' \setminus N_j^2$ and $S := S \cup \{i\}$. 4 Return S.

Algorithm 3 (Randomized Rounding)

- 1 Compute optimal solutions (x^*, y^*) and (v^*, w^*) to LP relaxation and its dual.
- 2 Initialize $S := \emptyset$, C' := C. 3 while $(C' \neq \emptyset)$ Choose $j \in C'$ minimizing $v_j^* + \Delta_j$. Choose $i \in N_j$ randomly according to probabilities x_{ij}^* . $C' := C' \setminus N_j^2$ and $S := S \cup \{i\}$.

4 Return S.

Algorithm 3 (Randomized Rounding)

- 1 Compute optimal solutions (x^*, y^*) and (v^*, w^*) to LP relaxation and its dual.
- 2 Initialize $S := \emptyset$, C' := C. 3 while $(C' \neq \emptyset)$ Choose $j \in C'$ minimizing $v_j^* + \Delta_j$. Choose $i \in N_j$ randomly according to probabilities x_{ij}^* . $C' := C' \setminus N_j^2$ and $S := S \cup \{i\}$. 4 Return S.

Theorem 6.7

Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8

Algorithm 2 is a 3-approximation algorithm for UFL.

Today you learnt ...

