

November 12, 2018

LP Rounding

LP Rounding

General idea:

1 formulation
formulate problem as an integer program
2 relaxation
drop integrality requirement \rightarrow LP
3 rounding
solve LP and construct solution for original problem with

$$
\mathrm{ALG} \leq \alpha Z^{*} \leq \alpha \mathrm{OPT}
$$

LP Rounding

General idea:

1 formulation
formulate problem as an integer program
2 relaxation
drop integrality requirement \rightarrow LP
3 rounding
solve LP and construct solution for original problem with

$$
\mathrm{ALG} \leq \alpha Z^{*} \leq \alpha \mathrm{OPT}
$$

LP Rounding

General idea:

1 formulation
formulate problem as an integer program
2 relaxation
drop integrality requirement \rightarrow LP
3 rounding
solve LP and construct solution for original problem with

$$
\mathrm{ALG} \leq \alpha Z^{*} \leq \alpha \mathrm{OPT}
$$

LP Rounding: Prize-collecting Steiner Tree

Prize-collecting Steiner Tree

Input: graph $G=(V \cup\{r\}, E)$, distances $d: E \rightarrow \mathbb{R}_{+}$, penalties $\pi: V \rightarrow \mathbb{R}_{+}$
Task: find $U \subseteq V$ and a tree T spanning $U \cup\{r\}$ minimizing $\sum_{e \in T} d(e)+\sum_{v \in V \backslash U} \pi(v)$

Prize-collecting Steiner Tree

Input: graph $G=(V \cup\{r\}, E)$, distances $d: E \rightarrow \mathbb{R}_{+}$, penalties $\pi: V \rightarrow \mathbb{R}_{+}$
Task: find $U \subseteq V$ and a tree T spanning $U \cup\{r\}$ minimizing $\sum_{e \in T} d(e)+\sum_{v \in V \backslash U} \pi(v)$

Prize-collecting Steiner Tree

Input: graph $G=(V \cup\{r\}, E)$, distances* $d: E \rightarrow \mathbb{R}_{+}$, penalties $\pi: V \rightarrow \mathbb{R}_{+}$
Task: find $U \subseteq V$ and a tree T spanning $U \cup\{r\}$ minimizing $\sum_{e \in T} d(e)+\sum_{v \in V \backslash U} \pi(v)$

*w.l.o.g.: G is complete and d is metric

variables:

$$
\begin{aligned}
& x(e)=1 \Leftrightarrow e \in T \\
& y(v)=1 \Leftrightarrow v \in U
\end{aligned}
$$

$\min \sum_{e \in E} d(e) x(e)+\sum_{v \in V} \pi(v)(1-y(v))$
s.t.

$$
\sum_{e \in \delta(S)} x(e) \geq y(v) \quad \forall S \subseteq V, \forall v \in S
$$

$$
\begin{array}{ll}
x(e) \in\{0,1\} & \forall e \in E \\
y(v) \in\{0,1\} & \forall v \in V
\end{array}
$$

variables:

$$
\begin{aligned}
& x(e)=1 \Leftrightarrow e \in T \\
& y(v)=1 \Leftrightarrow v \in U
\end{aligned}
$$

$$
\min \sum_{e \in E} d(e) x(e)+\sum_{v \in V} \pi(v)(1-y(v))
$$

s.t.

$$
\sum_{e \in \delta(S)} x(e) \geq y(v) \quad \forall S \subseteq V, \forall v \in S
$$

$$
\begin{array}{ll}
x(e) \in\{0,1\} & \forall e \in E \\
y(v) \in\{0,1\} & \forall v \in V
\end{array}
$$

$Z^{*}:=\min \sum_{e \in E} d(e) x(e)+\sum_{v \in V} \pi(v)(1-y(v))$
s.t.

$$
\sum_{e \in \delta(S)} x(e) \geq y(v) \quad \forall S \subseteq V, \forall v \in S
$$

$$
\begin{aligned}
& x(e) \geq 0 \\
& y(v) \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \forall e \in E \\
& \forall v \in V
\end{aligned}
$$

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

1 Compute optimal solution $\left(x^{*}, y^{*}\right)$ to LP.
2 Let $U:=\left\{v \in V: y^{*}(v) \geq \alpha\right\}$.
3 Let T be minimum spanning tree on $U \cup\{r\}$.
4 Return T and U.

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

1 Compute optimal solution $\left(x^{*}, y^{*}\right)$ to LP.
2 Let $U:=\left\{v \in V: y^{*}(v) \geq \alpha\right\}$.
3 Let T be minimum spanning tree on $U \cup\{r\}$.
4 Return T and U.

Claim 1: $\quad d(T) \leq \frac{2}{\alpha} \cdot \sum_{e \in E} d(e) x^{*}(e)$
Claim 2: $\quad \pi(V \backslash U) \leq \frac{1}{1-\alpha} \cdot \sum_{v \in V} \pi(v)\left(1-y^{*}(e)\right)$

A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

1 Compute optimal solution $\left(x^{*}, y^{*}\right)$ to LP.
2 Let $U:=\left\{v \in V: y^{*}(v) \geq \alpha\right\}$.
3 Let T be minimum spanning tree on $U \cup\{r\}$.
4 Return T and U.

Claim 1: $\quad d(T) \leq \frac{2}{\alpha} \cdot \sum_{e \in E} d(e) x^{*}(e)$
Claim 2: $\quad \pi(V \backslash U) \leq \frac{1}{1-\alpha} \cdot \sum_{v \in V} \pi(v)\left(1-y^{*}(e)\right)$

Theorem 6.1

Algorithm D is a 3-approximation algorithm for Prize-collecting Steiner Tree (when setting $\alpha=2 / 3$).

Improved approximation

Algorithm B (Best of Many)

1 Compute optimal solution (x^{*}, y^{*}) to LP.
2 Run Algorithm D for every $\alpha \in\left\{y^{*}(v): v \in V\right\}$.
3 Return best solution found.

Improved approximation

Algorithm B (Best of Many)

1 Compute optimal solution (x^{*}, y^{*}) to LP.
2 Run Algorithm D for every $\alpha \in\left\{y^{*}(v): v \in V\right\}$.
3 Return best solution found.

Algorithm R (Randomized Rounding)

Choose α uniformly at random from $[\gamma, 1]$ and run Algorithm D.
Observation: Algorithm B is at least as good as Algorithm R.

Improved approximation

Algorithm B (Best of Many)

1 Compute optimal solution (x^{*}, y^{*}) to LP.
2 Run Algorithm D for every $\alpha \in\left\{y^{*}(v): v \in V\right\}$.
3 Return best solution found.

Algorithm R (Randomized Rounding)

Choose α uniformly at random from $[\gamma, 1]$ and run Algorithm D.
Observation: Algorithm B is at least as good as Algorithm R. (randomized analysis)

Theorem 6.2

Algorithm R is a randomized 2.54-approximation algorithm for Prize-collecting Steiner Tree (when setting $\gamma=\exp (-1 / 2)$).

Corollary 6.3
Algorithm B is a 2.54 -approximation algorithm for PC-ST.

LP Rounding: Uncapacitated Facility Location

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f_{i} for $i \in F$, metric distances $d_{i j}$ for $i \in F$ and $j \in C$
Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_{i}+\sum_{j \in C} \min _{i \in S} d_{i j}$

\square

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f_{i} for $i \in F$, metric distances $d_{i j}$ for $i \in F$ and $j \in C$ Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_{i}+\sum_{j \in C} \min _{i \in S} d_{i j}$

metric: $d_{i j} \leq d_{i j^{\prime}}+d_{i^{\prime} j^{\prime}}+d_{i^{\prime} j}$

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f_{i} for $i \in F$, metric distances $d_{i j}$ for $i \in F$ and $j \in C$
Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_{i}+\sum_{j \in C} \min _{i \in S} d_{i j}$

\square

(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f_{i} for $i \in F$, metric distances $d_{i j}$ for $i \in F$ and $j \in C$
Task: find $S \subseteq F$, minimizing $\sum_{i \in S} f_{i}+\sum_{j \in C} \min _{i \in S} d_{i j}$

LP relaxation

$$
\begin{array}{rlrl}
\min & \sum_{i \in F} \sum_{j \in C} d_{i j} x_{i j} & +\sum_{i \in F} f_{i} y_{i} & \\
\text { s.t. } & \sum_{i \in F} x_{i j} & =1 & \forall j \in C \\
y_{i}-x_{i j} & \geq 0 & \forall i \in F, j \in C & \\
x_{i j}=1 \Leftrightarrow i \text { serves } j \\
y_{i}=1 \Leftrightarrow i \in S
\end{array}
$$

LP relaxation

$$
\begin{aligned}
\min & \sum_{i \in F} \sum_{j \in C} d_{i j} x_{i j} & +\sum_{i \in F} f_{i} y_{i} & \text { variables: } \\
\text { s.t. } & \sum_{i \in F} x_{i j} & =1 & \forall j \in C
\end{aligned} \begin{array}{ll}
x_{i j}=1 \Leftrightarrow i \text { serves } j \\
y_{i}=1 \Leftrightarrow i \in S
\end{array}
$$

LP relaxation

$$
\begin{array}{rlrl}
\min & \sum_{i \in F} \sum_{j \in C} d_{i j} x_{i j} & +\sum_{i \in F} f_{i} y_{i} & \\
\text { s.t. } & \sum_{i \in F} x_{i j} & =1 & \forall j \in C \\
y_{i}-x_{i j} & \geq 0 & \forall i \in F, j \in C & \\
x_{i j}=1 \Leftrightarrow i \text { serves } j \\
x_{i j} & \geq 0 & \forall i \in F, j \in C & \\
y_{i} & \geq 0 & \forall i \in F & \\
& \forall j \in S
\end{array}
$$

LP relaxation

$$
\min \sum_{i \in F} \sum_{j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}
$$

$$
\begin{array}{rr}
\sum_{i \in F} x_{i j}=1 & \forall j \in C \\
y_{i}-x_{i j} \geq 0 & \forall i \in F, j \in C \\
x_{i j} \geq 0 & \forall i \in F, j \in C \\
y_{i} \geq 0 & \forall i \in F
\end{array}
$$

$$
0
$$

\square
variables:

$$
x_{i j}=1 \Leftrightarrow i \text { serves } j
$$

$$
y_{i}=1 \Leftrightarrow i \in S
$$

LP relaxation

$$
\min \sum_{i \in F} \sum_{j \in C} d_{i j} x_{i j}+\sum_{i \in F} f_{i} y_{i}
$$

variables:

$$
x_{i j}=1 \Leftrightarrow i \text { serves } j
$$

$$
\begin{array}{rr}
\sum_{i \in F} x_{i j}=1 & \forall j \in C \\
y_{i}-x_{i j} \geq 0 & \forall i \in F, j \in C \\
x_{i j} \geq 0 & \forall i \in F, j \in C \\
y_{i} \geq 0 & \forall i \in F
\end{array}
$$

Ideas

Ideas

Idea: For each $j \in C$, open $i \in N_{j}$ minimizing $d_{i j}$.

Ideas

Idea: For each $j \in C$, open $i \in N_{j}$ minimizing $d_{i j}$.
\rightsquigarrow ignores opening costs

Ideas

Idea: For each $j \in C$, open $i \in N_{j}$ minimizing f_{i}.

Ideas

Idea: For each $j \in C$, open $i \in N_{j}$ minimizing f_{i}.
\rightsquigarrow opening costs can stack up

Ideas

Idea: Let $X \subseteq C$ with $N_{j} \cap N_{j^{\prime}}=\emptyset$ for $j, j^{\prime} \in X$. For each $j \in X$, open $i \in N_{j}$ minimizing f_{i}.

Ideas

Idea: Let $X \subseteq C$ with $N_{j} \cap N_{j^{\prime}}=\emptyset$ for $j, j^{\prime} \in X$. For each $j \in X$, open $i \in N_{j}$ minimizing f_{i}.

Ideas

Idea: Let $X \subseteq C$ with $N_{j} \cap N_{j^{\prime}}=\emptyset$ for $j, j^{\prime} \in X$. For each $j \in X$, open $i \in N_{j}$ minimizing $f_{i} . \quad \rightsquigarrow$ Connection costs of $C \backslash X$?

The algorithm

Algorithm 1 (Deterministic Rounding)

1 Compute optimal solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ to LP relaxation and its dual.
2 Initialize $S:=\emptyset, C^{\prime}:=C$.
3 while $\left(C^{\prime} \neq \emptyset\right)$
Choose $j \in C^{\prime}$ minimizing v_{j}^{*}. Choose $i \in N_{j}$ minimizing f_{i}. $C^{\prime}:=C^{\prime} \backslash N_{j}^{2}$ and $S:=S \cup\{i\}$.
4 Return S.

The algorithm

Algorithm 1 (Deterministic Rounding)

1 Compute optimal solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ to LP relaxation and its dual.

2 Initialize $S:=\emptyset, C^{\prime}:=C$.
3 while ($C^{\prime} \neq \emptyset$)
Choose $j \in C^{\prime}$ minimizing v_{j}^{*}. Choose $i \in N_{j}$ minimizing f_{i}. $C^{\prime}:=C^{\prime} \backslash N_{j}^{2}$ and $S:=S \cup\{i\}$.
4 Return S.

Theorem 6.4

Algorithm 1 is a 4-approximation algorithm for Uncapacitated Facility Location.

The algorithm

Algorithm 1 (Deterministic Rounding)

1 Compute optimal solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ to LP relaxation and its dual.

2 Initialize $S:=\emptyset, C^{\prime}:=C$.
3 while $\left(C^{\prime} \neq \emptyset\right)$
Choose $j \in C^{\prime}$ minimizing v_{j}^{*}. Choose $i \in N_{j}$ minimizing f_{i}. $C^{\prime}:=C^{\prime} \backslash N_{j}^{2}$ and $S:=S \cup\{i\}$.
4 Return S.

Theorem 6.4

Algorithm 1 is a 4-approximation algorithm for Uncapacitated Facility Location.

Improved algorithm

Algorithm 2 (Improved Deterministic Rounding)

1 Compute optimal solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ to LP relaxation and its dual.
2 Initialize $S:=\emptyset, C^{\prime}:=C$.
3 while $\left(C^{\prime} \neq \emptyset\right)$
Choose $j \in C^{\prime}$ minimizing v_{j}^{*}. Choose $i \in N_{j}$ minimizing $f_{i}+\sum_{j^{\prime} \in N_{j}^{2}} d_{i j^{\prime}}$. $C^{\prime}:=C^{\prime} \backslash N_{j}^{2}$ and $S:=S \cup\{i\}$.
4 Return S.

Improved algorithm

Algorithm 2 (Improved Deterministic Rounding)

1 Compute optimal solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ to LP relaxation and its dual.
2 Initialize $S:=\emptyset, C^{\prime}:=C$.
3 while $\left(C^{\prime} \neq \emptyset\right) \quad \Delta_{j}:=\sum_{i \in F} d_{i j} x_{i j}$
Choose $j \in C^{\prime}$ minimizing $v_{j}^{*}+\Delta_{j}$. Choose $i \in N_{j}$ minimizing $f_{i}+\sum_{j^{\prime} \in N_{j}^{2}} d_{i j^{\prime}}$.

$$
C^{\prime}:=C^{\prime} \backslash N_{j}^{2} \text { and } S:=S \cup\{i\} .
$$

4 Return S.

Improved algorithm

Algorithm 3 (Randomized Rounding)

1 Compute optimal solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ to LP relaxation and its dual.
2 Initialize $S:=\emptyset, C^{\prime}:=C$.
3 while $\left(C^{\prime} \neq \emptyset\right) \quad \Delta_{j}:=\sum_{i \in F} d_{i j} x_{i j}$
Choose $j \in C^{\prime}$ minimizing $v_{j}^{*}+\Delta_{j}$. Choose $i \in N_{j}$ randomly according to probabilities $x_{i j}^{*}$.

$$
C^{\prime}:=C^{\prime} \backslash N_{j}^{2} \text { and } S:=S \cup\{i\}
$$

4 Return S.

Improved algorithm

Algorithm 3 (Randomized Rounding)

1 Compute optimal solutions $\left(x^{*}, y^{*}\right)$ and $\left(v^{*}, w^{*}\right)$ to LP relaxation and its dual.
2 Initialize $S:=\emptyset, C^{\prime}:=C$.
3 while $\left(C^{\prime} \neq \emptyset\right) \quad \Delta_{j}:=\sum_{i \in F} d_{i j} x_{i j}$
Choose $j \in C^{\prime}$ minimizing $v_{j}^{*}+\Delta_{j}$. Choose $i \in N_{j}$ randomly according to probabilities $x_{i j}^{*}$. $C^{\prime}:=C^{\prime} \backslash N_{j}^{2}$ and $S:=S \cup\{i\}$.
4 Return S.

Theorem 6.7

Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8

Algorithm 2 is a 3-approximation algorithm for UFL.

Today you learnt ...

