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LP Rounding:
Prize-collecting Steiner Tree



Prize-collecting Steiner Tree

Input: graph G = (V U{r},E), distances d: E — Ry,
penalties 7 : V — R

Task: find U C V and a tree T spanning UU {r}
minimizing >~ c 7 d(e) + X cv\u (V)
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Prize-collecting Steiner Tree

Input: graph G = (V U{r},E), distances” d: E — Ry,
penalties 7 : V — R

Task: find U C V and a tree T spanning UU {r}
minimizing >~ c 7 d(e) + X cv\u (V)
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“w.l.o.g.: G is complete and d is metric



LP relaxation

variables:

x(e)=1 < ecT
y(v)=1 & veU

min " d(e)x(e) + Y w(v)(1 - y(v))

eckE veV
s.t. Zx(e) > y(v) ¥vSCV,VvesS
ecd(S)
x(e) €{0,1} VeeE

y(v) €{0,1} VveV
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LP relaxation

variables:
x(e)=1 < ecT
y(v)=1 & veU

Z" = min Z d(e)x(e) + Z m(v)(1 —y(v))

ecE veVv

s.t Zx(e) > y(v) VSCV,VveS
ecd(S)

x(e) > VecE

y(v) > VveV



A 3-approximation algorithm

Algorithm D (Deterministic Rounding)
Compute optimal solution (x*, y*) to LP.
Let U:={veV:y*(v)>a}l
Let T be minimum spanning tree on U U {r}.
Return T and U.
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A 3-approximation algorithm

Algorithm D (Deterministic Rounding)

Compute optimal solution (x*,y*) to LP.

Let U:={veV:y*(v)>a}l

Let T be minimum spanning tree on U U {r}.
Return T and U.

Claim1l: d(T7) < — Zd

eGE
Claim 2: =(V\ V)

veVv

Theorem 6.1

Algorithm D is a 3-approximation algorithm for Prize-collecting
Steiner Tree (when setting oo = 2/3).




Improved approximation

Algorithm B (Best of Many)
Compute optimal solution (x*,y*) to LP.
Run Algorithm D for every o € {y*(v) : v € V}.
Return best solution found.
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(randomized analysis)



Improved approximation

Algorithm B (Best of Many)

Compute optimal solution (x*,y*) to LP.
Run Algorithm D for every o € {y*(v) : v € V}.
Return best solution found.

Algorithm R (Randomized Rounding)
Choose a uniformly at random from [v,1] and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R.

(randomized analysis)

Theorem 6.2

Algorithm R is a randomized 2.54-approximation algorithm for
Prize-collecting Steiner Tree (when setting v = exp(—1/2)).

Corollary 6.3

Algorithm B is a 2.54-approximation algorithm for PC-ST.



LP Rounding:
Uncapacitated Facility Location



(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f; for i € F,
metric distances djj for i € F and j € C

Task: find S C F, minimizing > ;cs fi + > jcc Minies djj
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(Metric) Uncapacitated Facility Location

Input: facilities F, clients C, opening cost f; for i € F,
metric distances djj for i € F and j € C

Task: find S C F, minimizing > ;cs fi + > jcc Minies djj



LP relaxation
min > dpxg + Y fiyi variables:

ieF jeC i€F xj =1 < iserves j
s.t. dox =1 VjecC yi=1< ieS
icF
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yi €{0,1} VieF
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LP relaxation
min > dixg + Y fiyi variables:

ieF jeC i€F xj =1 < iserves j
s.t. inj =1 VJEC yi:]_<:>,'€5

ieF
yi—xj >0 VieF,jecC

xj =2 0 VieF,jeC

yi >0 VieF
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LP relaxation
min > dixg + Y fiyi variables:

icF jeC icF xj =1 & iserves j
s.t. d oxj =1 VjeC yi=1< ieS
icF
yi—xj >0 VieF,jecC
xj >0 VieF,jeC
yi > 0 VieF
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L]
N;:={i€eF : x;>0}

Idea: For each j € C, open i € N; minimizing f;.
~» opening costs can stack up
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Ideas

[]
N;:={i€eF : x;>0}

Idea: Let X C C with N; NN =0 for j,j' € X. For each j € X,
open i € N; minimizing f;. ~~ Connection costs of C\ X7



The algorithm

Algorithm 1 (Deterministic Rounding)
Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S := 0, C' := C.

while (C' # 0)
Choose j € C' minimizing v;".
Choose i € N; minimizing f;.
C':=C'\N?and S:=SU{i}.

Return S.
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Improved algorithm

Algorithm 2 (Improved Deterministic Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.
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Improved algorithm

Algorithm 2 (Improved Deterministic Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.
Initialize S := 0, C' := C.
while (C’ # 0) D=k dix;
Choose j € C' minimizing v/ + A
Choose i € N; minimizing f; + ZJ’EN/? dijr.
— 2 — ;
C':=C'\ N and S :=SU{i}.
Return S.



Improved algorithm

Algorithm 3 (Randomized Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S :=0, C' .= C.

while (C' # 0) Aj =Y icr dixi
Choose j € C' minimizing v/ + A
Choose i € N; randomly according to probabilities Xjj.-
C':=C'\N?and S:=SU{i}.

Return S.



Improved algorithm

Algorithm 3 (Randomized Rounding)

Compute optimal solutions (x*, y*) and (v*, w*)
to LP relaxation and its dual.

Initialize S :=0, C' .= C.

while (C' # 0) Aj =Y icr dixi
Choose j € C' minimizing v/ + A
Choose i € N; randomly according to probabilities Xjj.-
C':=C'\N?and S:=SU{i}.

Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.




Today you learnt ...

solve LP and round (randomly)



