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solve LP and construct solution for original problem with
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Prize-collecting Steiner Tree



Prize-collecting Steiner Tree

Input: graph G = (V ∪ {r},E ), distances

∗

d : E → R+,
penalties π : V → R+

Task: find U ⊆ V and a tree T spanning U ∪ {r}
minimizing

∑
e∈T d(e) +

∑
v∈V\U π(v)
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LP relaxation
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variables:
x(e) = 1 ⇔ e ∈ T
y(v) = 1 ⇔ v ∈ U

Z ∗ :=

min
∑
e∈E

d(e)x(e) +
∑
v∈V

π(v)(1− y(v))

s.t.
∑

e∈δ(S)
x(e) ≥ y(v) ∀ S ⊆ V , ∀ v ∈ S

x(e) ∈ {0, 1} ∀ e ∈ E
y(v) ∈ {0, 1} ∀ v ∈ V
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e∈E

d(e)x(e) +
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v∈V

π(v)(1− y(v))
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∑
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A 3-approximation algorithm
Algorithm D (Deterministic Rounding)

1 Compute optimal solution (x∗, y∗) to LP.
2 Let U := {v ∈ V : y∗(v) ≥ α}.
3 Let T be minimum spanning tree on U ∪ {r}.
4 Return T and U.

Claim 1: d(T ) ≤ 2
α
·
∑
e∈E

d(e)x∗(e)

Claim 2: π(V \ U) ≤ 1
1− α ·

∑
v∈V

π(v)(1− y∗(e))

Theorem 6.1
Algorithm D is a 3-approximation algorithm for Prize-collecting
Steiner Tree (when setting α = 2/3).
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Improved approximation

Algorithm B (Best of Many)
1 Compute optimal solution (x∗, y∗) to LP.
2 Run Algorithm D for every α ∈ {y∗(v) : v ∈ V }.
3 Return best solution found.

Algorithm R (Randomized Rounding)
Choose α uniformly at random from [γ, 1] and run Algorithm D.

Observation: Algorithm B is at least as good as Algorithm R.
(randomized analysis)

Theorem 6.2
Algorithm R is a randomized 2.54-approximation algorithm for
Prize-collecting Steiner Tree (when setting γ = exp(−1/2)).

Corollary 6.3
Algorithm B is a 2.54-approximation algorithm for PC-ST.
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(Metric) Uncapacitated Facility Location

Input: facilities F , clients C , opening cost fi for i ∈ F ,
metric distances dij for i ∈ F and j ∈ C

Task: find S ⊆ F , minimizing
∑

i∈S fi +
∑

j∈C mini∈S dij
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LP relaxation
variables:
xij = 1 ⇔ i serves j
yi = 1 ⇔ i ∈ S

min
∑
i∈F

∑
j∈C

dijxij +
∑
i∈F

fiyi

s.t.
∑
i∈F

xij = 1 ∀ j ∈ C

yi − xij ≥ 0 ∀ i ∈ F , j ∈ C
xij ∈ {0, 1} ∀ i ∈ F , j ∈ C
yi ∈ {0, 1} ∀ i ∈ F
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The algorithm
Algorithm 1 (Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅)

Choose j ∈ C ′ minimizing v∗j .
Choose i ∈ Nj minimizing fi .
C ′ := C ′ \ N2

j and S := S ∪ {i}.
4 Return S.
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Theorem 6.4
Algorithm 1 is a 4-approximation algorithm for Uncapacitated
Facility Location.
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Improved algorithm
Algorithm 2 (Improved Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅)

∆j :=
∑

i∈F dijxij

Choose j ∈ C ′ minimizing v∗j .
Choose i ∈ Nj minimizing fi +

∑
j′∈N2

j
dij′ .

C ′ := C ′ \ N2
j and S := S ∪ {i}.

4 Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.



Improved algorithm
Algorithm 2 (Improved Deterministic Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅) ∆j :=

∑
i∈F dijxij

Choose j ∈ C ′ minimizing v∗j + ∆j .
Choose i ∈ Nj minimizing fi +

∑
j′∈N2

j
dij′ .

C ′ := C ′ \ N2
j and S := S ∪ {i}.

4 Return S.

Theorem 6.7
Algorithm 3 is a randomized 3-approximation algorithm for UFL.

Corollary 6.8
Algorithm 2 is a 3-approximation algorithm for UFL.



Improved algorithm
Algorithm 3 (Randomized Rounding)

1 Compute optimal solutions (x∗, y∗) and (v∗,w∗)
to LP relaxation and its dual.

2 Initialize S := ∅, C ′ := C .
3 while (C ′ 6= ∅) ∆j :=

∑
i∈F dijxij
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Choose i ∈ Nj randomly according to probabilities x∗ij .
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Today you learnt ...

solve LP and round (randomly)


