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Max Sat

Input: variables x1, . . . , xn, disjunctive clauses C1, . . . ,Cm,
weights w1, . . . ,wm ∈ R+

Task: find a truth assignment maximizing
∑
j : Cj is satisfied

wj

x1 ∨ ¬x2 ∨ x3
C1 X

¬x1 ∨ x3
C2 X

¬x3
C3X

x2 ∨ x3 ∨ x4
C4 X

x2 ∨ ¬x4
C5 X

w1 = 2 w2 = 3 w3 = 1 w4 = 2 w5 = 1

assignment: weight: 6

x1 = true x2 = true x3 = false x4 = true



Previously ...

Algorithm (Random sampling):
For each i , set xi = true with proability 1/2 (independently).

Analysis: Pr[Cj satisfied] = 1− (1/2)|Cj | ≥ 1/2

I Random sampling is a randomized 1
2 -approximation.

I Algorithm can be derandomized (Method of Conditional
Expectations).



LP rounding

max
m∑

j=1
wjzj

s.t.
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj ∀ j ∈ [m]

0 ≤

yi ∈ {0, 1} ∀ i ∈ [n]

0 ≤

zj ∈ {0, 1} ∀ j ∈ [m]

Algorithm 1:
1 Compute optimal LP solution (y∗, z∗).
2 For each i ∈ [n], set xi to true with probability y∗i .

Theorem 8.1
Algorithm 1 is a (1− 1/e)-approximation algorithm for Max Sat.
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Choosing the better of two solutions
Let Cj be a clause of length k. From previous analysis:

I Pr[Cj sat. in random sampling] ≥ 1− (1/2)k

I Pr[Cj sat. in randomized rounding] ≥
(
1−

(
1− 1

k

)k
)

z∗j

Idea: Run both algorithms and take the better solution.
Analysis: Run either algorithm with probability 1/2.
Then clause Cj is satisfied with probability at least

1
2
(
1− 2−k

)
z∗j + 1

2

(
1−

(
1− 1

k

)k
)

z∗j ≥
3
4z∗j .
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Non-linear randomized rounding
Let f : [0, 1]→ [0, 1] be a function with

1− 4−t ≤ f (t) ≤ 4t−1 for all t ∈ [0, 1].
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4t−1

Algorithm 2
1 Compute optimal LP solution (y∗, z∗).
2 For each i ∈ [n], set xi to true with probability f (y∗i ).

Theorem 8.2
Algorithm 2 is a randomized 3/4-approximation for Max Sat.
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Integrality gap

Z ∗ := max
m∑

j=1
wjzj

s.t.
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj ∀ j ∈ [m]

0 ≤ yi ≤ 1 ∀ i ∈ [n]
0 ≤ zj ≤ 1 ∀ j ∈ [m]

We have analyzed two algorithms with ALG ≥ 3
4Z ∗.

Can we do better using this LP?

No.

Conisder this instance:
x1 ∨ x2 x1 ∨ ¬x2 ¬x1 ∨ x2 ¬x1 ∨ ¬x2 w ≡ 1

OPT = 3 Z ∗ = 4 (yi = 1/2 for all i)
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Chernoff Bounds:
Integer Multicommodity Flows



Integer Multicommodity Flow

Input: graph G = (V ,E ), k terminal pairs si , ti ∈ V
Task: find set an si -ti -path Pi for each i ∈ [k],

minimizing maxe∈E |{i ∈ [k] : e ∈ Pi}|

s1 s2
s3

t1
t2

t3

t3
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LP relaxation

Pi := {P ⊆ E : P is si -ti -path} P :=
⋃

i∈[k] Pi

min W
s.t.

∑
P∈Pi

xP = 1 ∀ i ∈ [k]

∑
P∈P:e∈P

xP ≤ W ∀ e ∈ E

xP ∈ {0, 1} ∀ P ∈ P

Algorithm:
1 Compute optimal LP solution (x∗,W ∗).
2 For each i , let Pi = P ∈ Pi with probability x∗P .

Define random variable Ye := |{i : e ∈ Pi}|. Then

E[Ye] =
∑
i∈[k]

∑
P∈Pi :e∈P

Pr[Pi = P] =
∑
i∈[k]

∑
P∈Pi :e∈P

x∗P ≤ W ∗.
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E[ALG] = E[maxe∈E Ye]
Know: E[Ye] ≤ W ∗ ≤ OPT

Caution: E[maxe∈E Ye] 6= maxe∈E E[Ye]
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Chernoff bound

Theorem 8.3
Let X1, . . . ,Xk be independent random variables in {0, 1}
and U ≥ E[

∑k
i=1 Xi ]. Then for 0 ≤ δ ≤ 1:

Pr
[ k∑

i=1
Xi ≥ (1 + δ)U

]
≤ exp

(
−Uδ2

3

)
.

Apply to Randomized Rounding for IMF:

Random variable X i
e =

{
1 if path Pi contains e
0 otherwise

Then Ye =
∑k

i=1 X i
e with E[Ye] ≤W ∗.

With δ = 1 and U = c ln(m)W ∗:

Pr[Ye ≥ 2c ln(m)W ∗] ≤ exp
(
−c
3 ln(m)W ∗

)
≤ m−c/3
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Section 5.10.
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Analysis

Theorem 8.4
ALG < 2c ln(m)W ∗ with probability at least 1−m1−c/3.

Proof. Know: Pr[Ye ≥ 2c ln(m)W ∗] ≤ m−c/3

Pr[ALG ≥ 2c ln(m)W ∗] = Pr[∃ e ∈ E : Ye ≥ 2c ln(m)W ∗]

≤⋃
-bound

∑
e∈E

Pr[Ye ≥ 2c ln(m)W ∗]

≤ m ·m−c/3

Remark: If W ∗ ≥ c ln(m), we can get a better approximation
guarantee; see Theorem 5.29 in Williamson & Shmoys.
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