

November 19, 2018

Max SAT

Input: variables x_{1}, \ldots, x_{n}, disjunctive clauses C_{1}, \ldots, C_{m}, weights $w_{1}, \ldots, w_{m} \in \mathbb{R}_{+}$
Task: find a truth assignment maximizing $\sum_{j: C_{j} \text { is satisfied }} w_{j}$

$w_{1}=2$
assignment:

$w_{4}=2$
$w_{2}=3 \quad w_{3}=1$

$w_{5}=1$

$$
x_{1}=\text { true } \quad x_{2}=\text { true } \quad x_{3}=\text { false } \quad x_{4}=\text { true }
$$

Previously ...

Algorithm (Random sampling):
For each i, set $x_{i}=$ TRUE with proability $1 / 2$ (independently).
Analysis: $\operatorname{Pr}\left[C_{j}\right.$ satisfied $]=1-(1 / 2)^{\left|C_{j}\right|} \geq 1 / 2$

- Random sampling is a randomized $\frac{1}{2}$-approximation.
- Algorithm can be derandomized (Method of Conditional Expectations).

LP rounding

$$
\begin{array}{rlr}
\sum_{j=1}^{m} w_{j} z_{j} & & \\
\text { max } & & \\
\text { s.t. } \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} & \forall j \in[m] \\
y_{i} & \in\{0,1\} & \forall i \in[n] \\
z_{j} & \in\{0,1\} & \forall j \in[m]
\end{array}
$$

LP rounding

$$
\begin{array}{lrr}
\sum_{j=1}^{m} w_{j} z_{j} & & \\
\text { max } & & \\
\text { s.t. } \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) & \geq z_{j} & \forall j \in[m] \\
y_{i} & \in\{0,1\} & \forall i \in[n] \\
z_{j} & \in\{0,1\} & \forall j \in[m]
\end{array}
$$

LP rounding

$$
\begin{array}{rrr}
\max & \\
\text { s.t. } \sum_{i=1}^{m} w_{j} z_{j} & \\
y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} & \forall j \in[m] \\
0 \leq y_{i} \leq 1 & \forall i \in[n] \\
0 \leq z_{j} \leq 1 & \forall j \in[m]
\end{array}
$$

LP rounding

$$
\begin{array}{rr}
\sum_{j=1}^{m} w_{j} z_{j} & \\
\text { max } & \\
\text { s.t. } \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} & \forall j \in[m] \\
0 \leq y_{i} \leq 1 & \forall i \in[n] \\
0 \leq z_{j} \leq 1 & \forall j \in[m]
\end{array}
$$

Algorithm 1:

1 Compute optimal LP solution $\left(y^{*}, z^{*}\right)$.
2 For each $i \in[n]$, set x_{i} to true with probability y_{i}^{*}.

LP rounding

$$
\begin{array}{rr}
\sum_{j=1}^{m} w_{j} z_{j} & \\
\text { max } & \\
\text { s.t. } \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} & \forall j \in[m] \\
0 \leq y_{i} \leq 1 & \forall i \in[n] \\
0 \leq z_{j} \leq 1 & \forall j \in[m]
\end{array}
$$

Algorithm 1:

1 Compute optimal LP solution $\left(y^{*}, z^{*}\right)$.
2 For each $i \in[n]$, set x_{i} to true with probability y_{i}^{*}.

Theorem 8.1

Algorithm 1 is a ($1-1 / e$)-approximation algorithm for Max Sat.

Choosing the better of two solutions

Let C_{j} be a clause of length k. From previous analysis:

- $\operatorname{Pr}\left[C_{j}\right.$ sat. in random sampling $] \geq 1-(1 / 2)^{k}$
- $\operatorname{Pr}\left[C_{j}\right.$ sat. in randomized rounding $] \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*}$

Choosing the better of two solutions

Let C_{j} be a clause of length k. From previous analysis:

- $\operatorname{Pr}\left[C_{j}\right.$ sat. in random sampling $] \geq 1-(1 / 2)^{k}$
- $\operatorname{Pr}\left[C_{j}\right.$ sat. in randomized rounding $] \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*}$

Idea: Run both algorithms and take the better solution.

Choosing the better of two solutions

Let C_{j} be a clause of length k. From previous analysis:

- $\operatorname{Pr}\left[C_{j}\right.$ sat. in random sampling $] \geq 1-(1 / 2)^{k}$
- $\operatorname{Pr}\left[C_{j}\right.$ sat. in randomized rounding $] \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*}$

Idea: Run both algorithms and take the better solution.
Analysis: Run either algorithm with probability $1 / 2$. Then clause C_{j} is satisfied with probability at least

$$
\frac{1}{2}\left(1-2^{-k}\right) z_{j}^{*}+\frac{1}{2}\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*} \geq \frac{3}{4} z_{j}^{*}
$$

Choosing the better of two solutions

Let C_{j} be a clause of length k. From previous analysis:

- $\operatorname{Pr}\left[C_{j}\right.$ sat. in random sampling $] \geq 1-(1 / 2)^{k}$
- $\operatorname{Pr}\left[C_{j}\right.$ sat. in randomized rounding $] \geq\left(1-\left(1-\frac{1}{k}\right)^{k}\right) z_{j}^{*}$

Idea: Run both algorithms and take the better solution.
Analysis: Run either algorithm with probability $1 / 2$.
Then clause C_{j} is satisfied with probability at least

Non-linear randomized rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-t} \leq f(t) \leq 4^{t-1} \quad \text { for all } t \in[0,1]
$$

Algorithm 2
1 Compute optimal LP solution $\left(y^{*}, z^{*}\right)$.
2 For each $i \in[n]$, set x_{i} to true with probability $f\left(y_{i}^{*}\right)$.

Non-linear randomized rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-t} \leq f(t) \leq 4^{t-1} \quad \text { for all } t \in[0,1]
$$

Algorithm 2

1 Compute optimal LP solution $\left(y^{*}, z^{*}\right)$.
2 For each $i \in[n]$, set x_{i} to true with probability $f\left(y_{i}^{*}\right)$.

Theorem 8.2

Algorithm 2 is a randomized 3/4-approximation for Max SAt.

Integrality gap

$$
\begin{array}{rlr}
Z^{*}:=\max & \\
\text { s.t. } \sum_{j \in P_{j}} y_{j}+\sum_{j}\left(1-y_{i}\right) & \geq z_{j} & \forall j \in[m] \\
0 \leq y_{i} \leq 1 & \forall i \in[n] \\
0 \leq z_{j} \leq 1 & \forall j \in[m]
\end{array}
$$

We have analyzed two algorithms with ALG $\geq \frac{3}{4} Z^{*}$. Can we do better using this LP?

Integrality gap

$$
\begin{aligned}
Z^{*}:=\max & \\
\text { s.t. } \sum_{i \in P_{j}} y_{j}+z_{j} & \\
\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j} & \forall j \in[m] \\
0 \leq y_{i} \leq 1 & \forall i \in[n] \\
0 \leq z_{j} \leq 1 & \forall j \in[m]
\end{aligned}
$$

We have analyzed two algorithms with ALG $\geq \frac{3}{4} Z^{*}$. Can we do better using this LP? No.

Conisder this instance:

$$
\begin{array}{cccc}
x_{1} \vee x_{2} & x_{1} \vee \neg x_{2} & \neg x_{1} \vee x_{2} & \neg x_{1} \vee \neg x_{2}
\end{array} \quad w \equiv 1
$$

Chernoff Bounds: Integer Multicommodity Flows

Integer Multicommodity Flow

Input: graph $G=(V, E), k$ terminal pairs $s_{i}, t_{i} \in V$
Task: find set an $s_{i}-t_{i}$-path P_{i} for each $i \in[k]$, minimizing $\max _{e \in E}\left|\left\{i \in[k]: e \in P_{i}\right\}\right|$

Integer Multicommodity Flow

Input: graph $G=(V, E), k$ terminal pairs $s_{i}, t_{i} \in V$
Task: find set an $s_{i}-t_{i}$-path P_{i} for each $i \in[k]$, minimizing $\max _{e \in E}\left|\left\{i \in[k]: e \in P_{i}\right\}\right|$

LP relaxation

$$
\mathcal{P}_{i}:=\left\{P \subseteq E: P \text { is } s_{i}-t_{i} \text {-path }\right\} \quad \mathcal{P}:=\bigcup_{i \in[k]} \mathcal{P}_{i}
$$

$$
\begin{aligned}
\min & W & \\
\text { s.t. } \sum_{P \in \mathcal{P}_{i}} x_{P} & =1 & \forall i \in[k] \\
\sum_{P \in \mathcal{P}: e \in P} x_{P} & \leq W & \forall e \in E \\
x_{P} & \in\{0,1\} & \forall P \in \mathcal{P}
\end{aligned}
$$

LP relaxation

$$
\mathcal{P}_{i}:=\left\{P \subseteq E: P \text { is } s_{i}-t_{i} \text {-path }\right\} \quad \mathcal{P}:=\bigcup_{i \in[k]} \mathcal{P}_{i}
$$

$$
\begin{array}{rlr}
\min & W & \\
\text { s.t. } \sum_{P \in \mathcal{P}_{i}} x_{P} & =1 & \forall i \in[k] \\
\sum_{P \in \mathcal{P}: e \in P} x_{P} & \leq W & \forall e \in E \\
x_{P} & \in\{0,1\} & \forall P \in \mathcal{P}
\end{array}
$$

LP relaxation

$$
\mathcal{P}_{i}:=\left\{P \subseteq E: P \text { is } s_{i}-t_{i} \text {-path }\right\} \quad \mathcal{P}:=\bigcup_{i \in[k]} \mathcal{P}_{i}
$$

$$
\begin{array}{rlr}
\min & W & \\
\text { s.t. } \sum_{P \in \mathcal{P}_{i}} x_{P} & =1 & \forall i \in[k] \\
\sum_{P \in \mathcal{P}: e \in P} x_{P} & \leq W & \forall e \in E \\
x_{P} & \geq 0 & \forall P \in \mathcal{P}
\end{array}
$$

$$
\mathcal{P}_{i}:=\left\{P \subseteq E: P \text { is } s_{i}-t_{i} \text {-path }\right\} \quad \mathcal{P}:=\bigcup_{i \in[k]} \mathcal{P}_{i}
$$

$$
\begin{array}{rlr}
\min & W & \\
\text { s.t. } \sum_{P \in \mathcal{P}_{i}} x_{P} & =1 & \forall i \in[k] \\
\sum_{P \in \mathcal{P}: e \in P} x_{P} & \leq W & \forall e \in E \\
x_{P} & \geq 0 & \forall P \in \mathcal{P}
\end{array}
$$

Algorithm:

1 Compute optimal LP solution $\left(x^{*}, W^{*}\right)$.
2 For each i, let $P_{i}=P \in \mathcal{P}_{i}$ with probability x_{P}^{*}.

$$
\mathcal{P}_{i}:=\left\{P \subseteq E: P \text { is } s_{i}-t_{i} \text {-path }\right\} \quad \mathcal{P}:=\bigcup_{i \in[k]} \mathcal{P}_{i}
$$

$$
\begin{array}{rlr}
\min & W & \\
\text { s.t. } \sum_{P \in \mathcal{P}_{i}} x_{P} & =1 & \forall i \in[k] \\
\sum_{P \in \mathcal{P}: e \in P} x_{P} & \leq W & \forall e \in E \\
x_{P} & \geq 0 & \forall P \in \mathcal{P}
\end{array}
$$

Algorithm:

1 Compute optimal LP solution $\left(x^{*}, W^{*}\right)$.
2 For each i, let $P_{i}=P \in \mathcal{P}_{i}$ with probability x_{P}^{*}.
Define random variable $Y_{e}:=\left|\left\{i: e \in P_{i}\right\}\right|$. Then

$$
\mathbb{E}\left[Y_{e}\right]=\sum_{i \in[k]} \sum_{P \in \mathcal{P}_{i}: e \in P} \operatorname{Pr}\left[P_{i}=P\right]=\sum_{i \in[k]} \sum_{P \in \mathcal{P}_{i}: \in \in P} x_{P}^{*} \leq W^{*} .
$$

$\mathbb{E}[A L G]=\mathbb{E}\left[\max _{e \in E} Y_{e}\right]$ Know: $\mathbb{E}\left[Y_{e}\right] \leq W^{*} \leq$ OPT

$$
\begin{gathered}
\mathbb{E}[\mathrm{ALG}]=\mathbb{E}\left[\max _{e \in E} Y_{e}\right] \\
\text { Know: } \mathbb{E}\left[Y_{e}\right] \leq W^{*} \leq \mathrm{OPT}
\end{gathered}
$$

Caution: $\mathbb{E}\left[\max _{e \in E} Y_{e}\right] \neq \max _{e \in E} \mathbb{E}\left[Y_{e}\right]$

Chernoff bound

Theorem 8.3

Let X_{1}, \ldots, X_{k} be independent random variables in $\{0,1\}$ and $U \geq \mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right]$. Then for $0 \leq \delta \leq 1$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq(1+\delta) U\right] \leq \exp \left(-\frac{U \delta^{2}}{3}\right)
$$

Chernoff bound

Theorem 8.3

Let X_{1}, \ldots, X_{k} be independent random variables in $\{0,1\}$ and $U \geq \mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right]$. Then for $0 \leq \delta \leq 1$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq(1+\delta) U\right] \leq \exp \left(-\frac{U \delta^{2}}{3}\right)
$$

Proof. Use Markov's inequality; see Williamson \& Shmoys Section 5.10.

Chernoff bound

Theorem 8.3

Let X_{1}, \ldots, X_{k} be independent random variables in $\{0,1\}$ and $U \geq \mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right]$. Then for $0 \leq \delta \leq 1$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq(1+\delta) U\right] \leq \exp \left(-\frac{U \delta^{2}}{3}\right)
$$

Apply to Randomized Rounding for IMF:
Random variable $X_{e}^{i}= \begin{cases}1 & \text { if path } P_{i} \text { contains } e \\ 0 & \text { otherwise }\end{cases}$
Then $Y_{e}=\sum_{i=1}^{k} X_{e}^{i}$ with $\mathbb{E}\left[Y_{e}\right] \leq W^{*}$.

Chernoff bound

Theorem 8.3

Let X_{1}, \ldots, X_{k} be independent random variables in $\{0,1\}$ and $U \geq \mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right]$. Then for $0 \leq \delta \leq 1$:

$$
\operatorname{Pr}\left[\sum_{i=1}^{k} X_{i} \geq(1+\delta) U\right] \leq \exp \left(-\frac{U \delta^{2}}{3}\right)
$$

Apply to Randomized Rounding for IMF:
Random variable $X_{e}^{i}= \begin{cases}1 & \text { if path } P_{i} \text { contains } e \\ 0 & \text { otherwise }\end{cases}$
Then $Y_{e}=\sum_{i=1}^{k} X_{e}^{i}$ with $\mathbb{E}\left[Y_{e}\right] \leq W^{*}$.
With $\delta=1$ and $U=c \ln (m) W^{*}$:

$$
\operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \leq \exp \left(-\frac{c}{3} \ln (m) W^{*}\right) \leq m^{-c / 3}
$$

Analysis

Theorem 8.4
ALG $<2 c \ln (m) W^{*}$ with probability at least $1-m^{1-c / 3}$.

Analysis

Theorem 8.4

ALG $<2 c \ln (m) W^{*}$ with probability at least $1-m^{1-c / 3}$.
Proof. Know: $\operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \leq m^{-c / 3}$

Analysis

Theorem 8.4

ALG $<2 c \ln (m) W^{*}$ with probability at least $1-m^{1-c / 3}$.
Proof. Know: $\operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \leq m^{-c / 3}$

$$
\operatorname{Pr}\left[\mathrm{ALG} \geq 2 c \ln (m) W^{*}\right]=\operatorname{Pr}\left[\exists e \in E: Y_{e} \geq 2 c \ln (m) W^{*}\right]
$$

Analysis

Theorem 8.4

ALG $<2 c \ln (m) W^{*}$ with probability at least $1-m^{1-c / 3}$.
Proof. Know: $\operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \leq m^{-c / 3}$

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{ALG} \geq 2 c \ln (m) W^{*}\right] & =\operatorname{Pr}\left[\exists e \in E: \quad Y_{e} \geq 2 c \ln (m) W^{*}\right] \\
& \leq \sum_{\mathrm{U} \text {-bound }} \operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right]
\end{aligned}
$$

Analysis

Theorem 8.4

ALG $<2 c \ln (m) W^{*}$ with probability at least $1-m^{1-c / 3}$.
Proof. Know: $\operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \leq m^{-c / 3}$

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{ALG} \geq 2 c \ln (m) W^{*}\right] & =\operatorname{Pr}\left[\exists e \in E: \quad Y_{e} \geq 2 c \ln (m) W^{*}\right] \\
& \leq \sum_{e \in E} \operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \\
& \leq m \cdot m^{-c / 3}
\end{aligned}
$$

Analysis

Theorem 8.4

ALG $<2 c \ln (m) W^{*}$ with probability at least $1-m^{1-c / 3}$.
Proof. Know: $\operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \leq m^{-c / 3}$

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{ALG} \geq 2 c \ln (m) W^{*}\right] & =\operatorname{Pr}\left[\exists e \in E: Y_{e} \geq 2 c \ln (m) W^{*}\right] \\
& \leq \sum_{\mathrm{U} \text {-bound }} \operatorname{Pr}\left[Y_{e} \geq 2 c \ln (m) W^{*}\right] \\
& \leq m \cdot m^{-c / 3} \square
\end{aligned}
$$

Remark: If $W^{*} \geq c \ln (m)$, we can get a better approximation guarantee; see Theorem 5.29 in Williamson \& Shmoys.

