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The primal-dual method
and Lagrangean relaxation
for k-Median

(continued)



Input: facilities F, clients C, k € N
metric distances djj for i € F and j € C

Task: find S C F, |S| < k minimizing 37 d(S, )
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Idea: Choose some A > 0. Run primal-dual algorithm for UFL
instance with facility costs f; = A for all i € F.



Combining two solutions

Bisection search
We can find in polynomial time A1, A2 > 0 and corresponding
51,5 C F computed by the primal-dual algorithm such that
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Combining two solutions

Bisection search
We can find in polynomial time A1, A2 > 0 and corresponding
51,5 C F computed by the primal-dual algorithm such that
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Algorithm
Find A1, S1 and Ay, Sy as above. Define o :=
If a < 1/2 then return Ss.

If & > 1/2 then

For i € S, let ¢(i) be the nearest facility to i in S1.

Let S:= {p(i):i € Sy}

Select X C S\ S with |X| = k — |S]| uniformly at random.
Return |S U X|.
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Iterated Rounding for
Survivable Network Design



SURVIVABLE NETWORK DESIGN

Input: graph G = (V, E), weights w : E — R,
connectivity requirements r,,, for {v,w} C V

Task: find F C E containing r,, edge-disjoint v-w-paths
for every {v,w} C V, minimizing Y. We
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SURVIVABLE NETWORK DESIGN

Input: graph G = (V, E), weights w : E — R,
connectivity requirements r,,, for {v,w} C V

Task: find F C E containing r,, edge-disjoint v-w-paths
for every {v,w} C V, minimizing Y. We
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LP relaxation
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f(S) =max{rw : veSsS, we V\S}
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LP relaxation
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f(S) :=max{rw : ve S, we V\S}
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LP relaxation
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f(S) =max{rw : veSsS, we V\S}
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Algorithm

[LP(F)] min Z WeXe

ecE\F
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Algorithm (lterated Rounding)

F:=0
while (F is not feasible)

» Compute basic optimal solution x to LP(F).
» F:=FU{e€ E\F : x.>1/2}

return F

Remark: If LP is infeasible, there is no feasible solution to SND.



[LP(F)] min Z WeXe
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Theorem 11.1

Let F C E and x be a basic feasible solution to LP(F). Then F is
feasible or there is e € E \ F with xe > 1/2.



[LP(F)] min Z WeXe

ecE\F
st Y x > F(S)—[6(S)NF|  vSCV
e€d(S)\F
1> x >0 VecE\F

Theorem 11.1

Let F C E and x be a basic feasible solution to LP(F). Then F is
feasible or there is e € E \ F with xe > 1/2.

Theorem 11.2

There is a laminar collection £ C 2V such that
(2) {XS(S) : S € L} is linearly independent,
(3) £ =|E|



