

The primal-dual method and Lagrangean relaxation for *k*-Median

(continued)

k-Median

Input: facilities F, clients C, $k \in \mathbb{N}$

metric distances d_{ij} for $i \in F$ and $j \in C$

Task: find $S \subseteq F$, $|S| \le k$ minimizing $\sum_{j \in C} d(S, j)$

Lagrangean relaxation

min
$$\sum_{i \in F} \sum_{j \in C} d_{ij} x_{ij}$$
s.t.
$$\sum_{i \in F} x_{ij} = 1 \qquad \forall j \in C$$

$$y_i - x_{ij} \ge 0 \quad \forall i \in F, j \in C$$

$$\sum_{i \in F} y_i \le k$$

$$x_{ij} \ge 0 \quad \forall i \in F, j \in C$$

$$y_i > 0 \qquad \forall i \in F$$

Lagrangean relaxation

min
$$\sum_{i \in F} \sum_{j \in C} d_{ij} x_{ij} + \lambda \left(\sum_{i \in F} y_i - k \right)$$
s.t.
$$\sum_{i \in F} x_{ij} = 1 \qquad \forall j \in C$$

$$y_i - x_{ij} \ge 0 \quad \forall i \in F, j \in C$$

$$x_{ij} \ge 0 \quad \forall i \in F, j \in C$$

$$y_i \ge 0 \quad \forall i \in F, j \in C$$

$$y_i \ge 0 \quad \forall i \in F$$

Lagrangean relaxation

min
$$\sum_{i \in F} \sum_{j \in C} d_{ij} x_{ij} + \lambda \left(\sum_{i \in F} y_i - k \right)$$
s.t.
$$\sum_{i \in F} x_{ij} = 1 \qquad \forall j \in C$$

$$y_i - x_{ij} \ge 0 \quad \forall i \in F, j \in C$$

$$x_{ij} \ge 0 \quad \forall i \in F, j \in C$$

$$y_i \ge 0 \quad \forall i \in F$$

Idea: Choose some $\lambda \geq 0$. Run primal-dual algorithm for UFL instance with facility costs $f_i = \lambda$ for all $i \in F$.

Combining two solutions

Bisection search

We can find in polynomial time $\lambda_1, \lambda_2 \geq 0$ and corresponding $S_1, S_2 \subseteq F$ computed by the primal-dual algorithm such that

- lacksquare $0 \leq \lambda_2 \lambda_1 \leq rac{arepsilon \, \mathsf{OPT}}{3|F|}$ and
- ▶ $|S_1| \ge k \ge |S_2|$.

Combining two solutions

Bisection search

We can find in polynomial time $\lambda_1, \lambda_2 \geq 0$ and corresponding $S_1, S_2 \subseteq F$ computed by the primal-dual algorithm such that

- ▶ $0 \le \lambda_2 \lambda_1 \le \frac{\varepsilon \, \mathsf{OPT}}{3|F|}$ and
- ▶ $|S_1| \ge k \ge |S_2|$.

Algorithm

- I Find λ_1, S_1 and λ_2, S_2 as above. Define $\alpha := \frac{\kappa |S_2|}{|S_2| |S_1|}$.
- 2 If $\alpha \leq 1/2$ then return S_2 .
- If $\alpha > 1/2$ then
 - ▶ For $i \in S_2$ let $\phi(i)$ be the nearest facility to i in S_1 .
 - ▶ Let $\bar{S} := \{ \phi(i) : i \in S_2 \}.$
 - ▶ Select $X \subseteq S_1 \setminus \bar{S}$ with $|X| = k |\bar{S}|$ uniformly at random.
 - ▶ Return $|\bar{S} \cup X|$.

Iterated Rounding for

Survivable Network Design

Survivable Network Design

Input: graph G = (V, E), weights $w : E \to \mathbb{R}_+$, connectivity requirements r_{vw} for $\{v, w\} \subseteq V$

Task: find $F \subseteq E$ containing r_{vw} edge-disjoint v-w-paths

for every $\{v, w\} \subseteq V$, minimizing $\sum_{e \in F} w_e$

Survivable Network Design

Input: graph G = (V, E), weights $w : E \to \mathbb{R}_+$, connectivity requirements r_{vw} for $\{v, w\} \subseteq V$

Task: find $F \subseteq E$ containing r_{vw} edge-disjoint v-w-paths

for every $\{v,w\}\subseteq V$, minimizing $\sum_{e\in F}w_e$

$$f(S) := \max\{r_{vw} : v \in S, w \in V \setminus S\}$$

$$\begin{array}{ll} \min & \displaystyle \sum_{e \in E} w_e x_e \\ \\ \text{s.t.} & \displaystyle \sum_{e \in \delta(S)} x_e \; \geq \; f(S) \quad \forall \; S \subseteq V \\ \\ & \displaystyle x_e \; \in \{0,1\} \quad \forall \; e \in E \end{array}$$

$$f(S) := \max\{r_{vw} : v \in S, w \in V \setminus S\}$$

$$\begin{array}{ll} \min & \sum_{e \in E} w_e x_e \\ \\ \text{s.t.} & \sum_{e \in \delta(S)} x_e \geq f(S) & \forall \ S \subseteq V \\ \\ & x_e \in \{0,1\} & \forall \ e \in E \end{array}$$

$$f(S) := \max\{r_{vw} : v \in S, w \in V \setminus S\}$$

$$\begin{aligned} & \min & \sum_{e \in E} w_e x_e \\ & \text{s.t.} & \sum_{e \in \delta(S)} x_e \geq f(S) & \forall \ S \subseteq V \\ & & 1 \geq x_e \geq 0 & \forall \ e \in E \end{aligned}$$

$$f(S) := \max\{r_{vw} \, : \, v \in S, \, w \in V \setminus S\}$$

$$\begin{split} [\mathsf{LP}(F)] & & \min \sum_{e \in E \setminus F} w_e x_e \\ & & \text{s.t.} & \sum_{e \in \delta(S) \setminus F} x_e \ \geq \ f(S) - |\delta(S) \cap F| \qquad \forall \ S \subseteq V \\ & & 1 \ \geq \ x_e \ \geq \ 0 \qquad \qquad \forall \ e \in E \setminus F \end{split}$$

Algorithm

$$\begin{array}{ll} [\mathsf{LP}(F)] & \min \sum_{e \in E \setminus F} w_e x_e \\ & \text{s.t.} & \sum_{e \in \delta(S) \setminus F} x_e \ \geq \ f(S) - |\delta(S) \cap F| \qquad \forall \ S \subseteq V \\ & 1 \ \geq \ x_e \ \geq \ 0 \qquad \qquad \forall \ e \in E \setminus F \end{array}$$

Algorithm (Iterated Rounding)

- $F := \emptyset$
- 2 while (F is not feasible)
 - ▶ Compute basic optimal solution x to LP(F).
 - $F := F \cup \{e \in E \setminus F : x_e \ge 1/2\}$
- 3 return *F*

Remark: If LP is infeasible, there is no feasible solution to SND.

Main theorem

$$[\mathsf{LP}(F)] \quad \min \sum_{e \in E \setminus F} w_e x_e$$
 s.t.
$$\sum_{e \in \delta(S) \setminus F} x_e \geq f(S) - |\delta(S) \cap F| \qquad \forall \ S \subseteq V$$

$$1 \geq x_e \geq 0 \qquad \qquad \forall \ e \in E \setminus F$$

Theorem 11.1

Let $F \subseteq E$ and x be a basic feasible solution to LP(F). Then F is feasible or there is $e \in E \setminus F$ with $x_e \ge 1/2$.

Main theorem

$$[\mathsf{LP}(F)] \quad \min \sum_{e \in E \setminus F} w_e x_e$$

$$\mathsf{s.t.} \quad \sum_{e \in \delta(S) \setminus F} x_e \ \geq \ f(S) - |\delta(S) \cap F| \qquad \forall \ S \subseteq V$$

$$1 \ \geq \ x_e \ \geq \ 0 \qquad \qquad \forall \ e \in E \setminus F$$

Theorem 11.1

Let $F \subseteq E$ and x be a basic feasible solution to LP(F). Then F is feasible or there is $e \in E \setminus F$ with $x_e \ge 1/2$.

Theorem 11.2

There is a laminar collection $\mathcal{L} \subseteq 2^V$ such that

- (1) $\sum_{e \in \bar{\delta}(S)} x_e = f'(S)$ for all $S \in \mathcal{L}$,
- (2) $\{\chi_{\overline{\delta}(S)}: S \in \mathcal{L}\}$ is linearly independent,
- (3) $\mathcal{L} = |\bar{E}|$.