Lecture: Approximation Algorithms

Jannik Matuschke

TUTT

December 3, 2018

Iterated Rounding for SURVIVABLE NETWORK DESIGN (continued)

SURVIVABLE NETWORK DESIGN

Input: graph G = (V, E), distances $d : E \to \mathbb{R}_+$, connectivity requirements r_{vw} for $\{v, w\} \subseteq V$

Task: find $F \subseteq E$ containing r_{vw} edge-disjoint v-w-paths for every $\{v, w\} \subseteq V$, minimizing $\sum_{e \in F} d_e$

SURVIVABLE NETWORK DESIGN

Input: graph G = (V, E), distances $d : E \to \mathbb{R}_+$, connectivity requirements r_{vw} for $\{v, w\} \subseteq V$

Task: find $F \subseteq E$ containing r_{vw} edge-disjoint v-w-paths for every $\{v, w\} \subseteq V$, minimizing $\sum_{e \in F} d_e$

Algorithm

$$\begin{array}{lll} [\mathsf{LP}(F)] & \min \sum_{e \in E \setminus F} d_e x_e \\ & \text{s.t.} & \sum_{e \in \delta(S) \setminus F} x_e \geq f(S) - |\delta(S) \cap F| & \forall S \subseteq V \\ & 1 \geq x_e \geq 0 & \forall e \in E \setminus F \end{array}$$

with
$$f(S) := \max\{r_{vw} : v \in S, w \notin S\}$$

Algorithm (Iterated Rounding)

F := Ø
 while (F is not feasible)
 Compute basic optimal solution x to LP(F).
 F := F ∪ {e ∈ E \ F : x_e ≥ 1/2}

3 return F

Main theorem

Theorem 11.3

Let $F \subseteq E$ and x be a basic feasible solution to LP(F). Then F is feasible or there is $e \in E \setminus F$ with $x_e \ge 1/2$.

Main theorem

Theorem 11.3

Let $F \subseteq E$ and x be a basic feasible solution to LP(F). Then F is feasible or there is $e \in E \setminus F$ with $x_e \ge 1/2$.

Lemma 11.4

There is a laminar collection $\mathcal{L}\subseteq 2^V$ such that

(1)
$$\sum_{e \in \overline{\delta}(S)} x_e = f'(S)$$
 for all $S \in \mathcal{L}$,
(2) $\{\chi_{\overline{\delta}(S)} : S \in \mathcal{L}\}$ is linearly independent,
(3) $|\mathcal{L}| = |\overline{\mathcal{L}}|$.

Don't round today, what you can round tomorrow.