

Iterated Rounding for

STEINER TREE

STEINER TREE

Input: graph G = (V, E), terminals $R \subseteq V$,

distances $d: E \to \mathbb{R}_+$

Task: find a tree T spanning R minimizing $\sum_{e \in T} d(e)$

STEINER TREE

Input: graph G = (V, E), terminals $R \subseteq V$,

distances $d: E \to \mathbb{R}_+$

Task: find a tree T spanning R minimizing $\sum_{e \in T} d(e)$

STEINER TREE

Input: graph G = (V, E), terminals $R \subseteq V$,

 $\mathsf{distances}^* \ d : E \to \mathbb{R}_+$

Task: find a tree T spanning R minimizing $\sum_{e \in T} d(e)$

*w.l.o.g.: G is complete and d is metric

$$Z^*_{\mathsf{UC}} := \min \ \sum_{e \in E} d(e) x(e)$$
 s.t.
$$\sum_{e \in \delta(S)} x(e) \ \geq 1 \quad \forall \ S \subseteq V, R \cap S \neq \emptyset, R \setminus S \neq \emptyset$$

$$x(e) \ \geq \ 0 \qquad \qquad \forall \ e \in E$$

Integrality gap

$$\begin{split} Z_{\mathsf{UC}}^* := \min & \ \sum_{e \in E} d(e) x(e) \\ \text{s.t.} & \ \sum_{e \in \delta(S)} x(e) \ \geq 1 \quad \ \forall \ S \subseteq V, R \cap S \neq \emptyset, R \setminus S \neq \emptyset \\ & \ x(e) \ \geq \ 0 \qquad \qquad \forall \ e \in E \end{split}$$

How large can OPT $/Z_{IIC}^*$ be?

- ▶ not larger than 2 (primal-dual for STEINER FOREST)
- \triangleright can get arbitrarily close to 2, even when R = V

directed graph
$$D = (V, A)$$

$$\delta^+(S) := \{(v, w) \in A : v \in S, w \in V \setminus S\}$$

$$D = (V, A)$$

$$\delta^+(S) := \{(v,w) \in A : v \in S, w \in V \setminus S\}$$

$$Z^*_{\mathsf{BC}} := \min \ \sum_{a \in A} d(a) x(a)$$

s.t.
$$\sum_{a \in \delta^{+}(S)} x(a) \geq 1 \quad \forall S \subseteq V \setminus \{r\}, \ R \cap S \neq \emptyset$$

$$x(a) \geq 0$$

$$\forall a \in A$$

directed graph D = (V, A)

$$\delta^+(S) := \{(v,w) \in A : v \in S, w \in V \setminus S\}$$

$$Z_{\mathsf{BC}}^* := \min \sum_{a} d(a)x(a)$$

s.t.
$$\sum_{a \in \delta^+(S)} x(a) \ge 1 \quad \forall S \subseteq V \setminus \{r\}, \ R \cap S \neq \emptyset$$

$$x(a) \geq 0$$

$$\forall a \in A$$

If
$$R = V$$
, then $Z_{BC}^* = \mathsf{OPT}$.

Fix root $r \in R$.

Fix root $r \in R$. Direct all edges towards r.

A directed full component is an in-tree in which all non-leaves are Steiner nodes and all leaves are terminals.

Fix root $r \in R$. Direct all edges towards r.

directed full component C:

tree
$$(V_C, E_C)$$
 with root r_C
 $d_C := \sum_{e \in E_C} d_e$

Directed component relaxation

$$\mathcal{C}:=\{\textit{C}\ :\ \textit{C}\ \text{is dir. full comp. of}\ \textit{G}\}$$

$$\min \ \sum_{C \in \mathcal{C}} d_C x_C \qquad \qquad \Delta(S) := \{C \in \mathcal{C} : r_C \notin S, \, R_C \cap S \neq \emptyset\}$$

s.t.
$$\sum_{C \in \Delta(S)} x_C \ge 1$$
 $\forall S \subseteq V \setminus \{r\}, S \cap R \neq \emptyset$

$$x_C \in \{0,1\}$$

$$\forall \ \textit{C} \in \textit{C}$$

Directed component relaxation

$$\mathcal{C} := \{C : C \text{ is dir. full comp. of } G\}$$

$$\min \sum_{C \in \mathcal{C}} d_C x_C$$

$$\Delta(S) := \{C \in \mathcal{C} : r_C \notin S, R_C \cap S \neq \emptyset\}$$
 s.t.
$$\sum_{C \in \Delta(S)} x_C \ge 1$$

$$\forall S \subseteq V \setminus \{r\}, S \cap R \neq \emptyset$$

$$x_C \in \{0, 1\}$$

$$\forall \ C \in \mathcal{C}$$

Directed component relaxation

$$\mathcal{C}:=\{\textit{C}\ :\ \textit{C}\ \text{is dir. full comp. of}\ \textit{G}\}$$

$$\mathbf{Z}_{\mathsf{DC}}^* := \min \ \sum_{C \in \mathcal{C}} d_C x_C \qquad \qquad \Delta(S) := \{ C \in \mathcal{C} \ : \ r_C \notin S, \ R_C \cap S \neq \emptyset \}$$

s.t.
$$\sum_{C \in \Delta(S)} x_C \ge 1 \quad \forall S \subseteq V \setminus \{r\}, S \cap R \neq \emptyset$$

$$x_C \geq 0$$
 $\forall C \in C$

Contracting edges

contract edge $e = \{v, w\}$:

- ightharpoonup merge v and w into a single node v_e
- $\qquad \qquad \bullet \ \, d_{uv_e} = \min\{d_{uv}, d_{uw}\} \quad \forall \, u \in V$
- ▶ if v or w was a terminal, v_e is a terminal

Notation Let G/F denote the graph resulting from contracting all edges in F (order does not matter).

Contracting edges

contract edge $e = \{v, w\}$:

- merge v and w into a single node v_e
- $\qquad \qquad \bullet \ \, d_{uv_e} = \min\{d_{uv}, d_{uw}\} \quad \forall \, u \in V$
- ightharpoonup if v or w was a terminal, v_e is a terminal

Notation Let G/F denote the graph resulting from contracting all edges in F (order does not matter).

Algorithm

Algorithm

- **1** *F* := ∅
- for i := 1 to ℓ do
 - ▶ Compute optimal solution x to the LP for G/F.
 - ▶ Select $C \in \mathcal{C}$ at random with probabilities $x_C / \sum_{C' \in \mathcal{C}} x_{C'}$.
 - $F := F \cup E_C$.
- 3 Let T' be a minimum spanning tree on the terminals in G/F.
- 4 Return $T' \cup F$.

Algorithm

Algorithm

- $F := \emptyset$
- 2 for i := 1 to ℓ do
 - ▶ Compute optimal solution x to the LP for G/F.
 - ▶ Select $C \in C$ at random with probabilities $x_C / \sum_{C' \in C} x_{C'}$.
 - $F := F \cup E_C$.
- 3 Let T' be a minimum spanning tree on the terminals in G/F.
- 4 Return $T' \cup F$.

Algorithm

Algorithm

- $F := \emptyset$
- 2 for i := 1 to ℓ do
 - ▶ Compute optimal solution x to the LP for G/F.
 - ▶ Select $C \in \mathcal{C}$ at random with probabilities $x_C / \sum_{C' \in \mathcal{C}} x_{C'}$.
 - $F := F \cup E_C$.
- 3 Let T' be a minimum spanning tree on the terminals in G/F.
- 4 Return $T' \cup F$.

mst(F) := min cost of a spanning treeon the terminals in G/F

 $\mathsf{drop}_F(C) := \mathsf{mst}(F) - \mathsf{mst}(F \cup E_C)$

 $\mathsf{mst}(F) := \mathsf{min} \ \mathsf{cost} \ \mathsf{of} \ \mathsf{a} \ \mathsf{spanning} \ \mathsf{tree}$ on the terminals in G/F

 $\mathsf{drop}_{\mathit{F}}(\mathit{C}) := \mathsf{mst}(\mathit{F}) - \mathsf{mst}(\mathit{F} \cup \mathit{E}_\mathit{C})$

 $\mathsf{mst}(F) := \mathsf{min} \ \mathsf{cost} \ \mathsf{of} \ \mathsf{a} \ \mathsf{spanning} \ \mathsf{tree}$ on the terminals in G/F

 $\mathsf{drop}_{\mathit{F}}(\mathit{C}) := \mathsf{mst}(\mathit{F}) - \mathsf{mst}(\mathit{F} \cup \mathit{E}_\mathit{C})$

mst(F) := min cost of a spanning tree on the terminals in G/F

$$\mathsf{drop}_F(C) := \mathsf{mst}(F) - \mathsf{mst}(F \cup E_C)$$

Drop Lemma

$$mst(F) \leq \sum_{C \in \mathcal{C}} drop_F(C) x_C$$

Analysis

Algorithm

- $F := \emptyset$
- 2 for i := 1 to ℓ do
 - ▶ Compute optimal solution x to the LP for G/F.
 - ▶ Select $C \in C$ at random with probabilities $x_C / \sum_{C' \in C} x_{C'}$.
 - $F := F \cup E_C$.
- 3 Let T' be a minimum spanning tree on the terminals in G/F.
- 4 Return $T' \cup F$.

Assumptions

- ▶ LP relaxation can be solved efficiently.
 - \rightarrow restrict to small full components
- ▶ In every iteration $\sum_{C \in \mathcal{C}} x_C = \Sigma$.
 - \rightarrow introduce a dummy component

Rounding an SDP by

choosing a random hyperplane:

The Maximum Cut Problem

Max Cut

Input: graph G = (V, E), weights $w : E \to \mathbb{R}_+$ Task: find $S \subseteq V$ maximizing $\sum_{e \in \delta(S)} w(e)$

Max Cut

Input: graph G = (V, E), weights $w : E \to \mathbb{R}_+$

Task: find $S \subseteq V$ maximizing $\sum_{e \in \delta(S)} w(e)$

SDP for MAX CUT

Quadratic program:

$$\max \ \frac{1}{2} \cdot \sum_{\{i,j\} \in E} w_{ij} (1 - x_i x_j) \qquad \text{w.l.o.g.: } V = [n]$$

s.t. $x_i \in \{-1, +1\} \qquad \forall i \in [n]$

SDP for MAX CUT

Quadratic program:

$$\begin{array}{ll} \max & \frac{1}{2} \cdot \sum_{\{i,j\} \in \mathcal{E}} w_{ij} (1-x_i x_j) & \text{w.l.o.g.: } V = [n] \\ \\ \text{s.t.} & x_i \in \{-1,+1\} & \forall \ i \in [n] \end{array}$$

Relaxation:

$$Z^* := \max \ \frac{1}{2} \cdot \sum_{\{i,j\} \in E} w_{ij} (1 - v_i^T v_j)$$

$$\text{s.t.} \qquad v_i^T v_i = 1 \qquad \forall i \in [n]$$

$$v_i \in \mathbb{R}^n \qquad \forall i \in [n]$$

Selecting a random hyperplane

$$Z^* := \max \ rac{1}{2} \cdot \sum_{\{i,j\} \in E} w_{ij} (1 - v_i^T v_j)$$
 s.t. $v_i^T v_i = 1 \ v_i \in \mathbb{R}^n \ orall \ i \in [n]$

Algorithm

- 1 Compute optimal solution v^* to SDP.
- Choose $r \in \mathbb{R}^n$ with $r^T r = 1$ uniformly at random.
- 3 Return $S := \{i \in [n] : r^T v_i^* \ge 0\}.$

Theorem 13.6

The algorithm is a randomized 0.878-approximation for ${\rm MAX~CUT.}$

 $i \notin S, j \notin S$ $\{i, j\} \in \delta(S)$

 $i \in S, j \in S$ $\{i,j\} \notin \delta(S)$

 $i \notin S, j \in S$ $\{i,j\} \in \delta(S)$

$$i \notin S, j \in S$$

 $\{i,j\} \in \delta(S)$

Lemma 13.7

$$\frac{1}{\pi}\arccos(x) \ \geq \ 0.878 \cdot \frac{1}{2}(1-x) \qquad \forall \ x \in [-1,1]$$

Next Wednesday: FAQ Session