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Iterated Rounding for
STEINER TREE



STEINER TREE

Input: graph G = (V, E), terminals R C V,
distances d: E — R,

Task: find a tree T spanning R minimizing > .. d(e)
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STEINER TREE

Input: graph G = (V, E), terminals R C V,
distances” d : E — R,

Task: find a tree T spanning R minimizing > .. d(e)
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“w.l.o.g.: G is complete and d is metric



Undirected cut relaxation

variables:

x(e)=1 < ecT

Zjc == min Z d(e)x(e)
ecE

s.t. Zx(e)Zl VSCV,RNSAD,R\S#D
eci(S)
x(e) > 0 VeekE



Integrality gap

Z{jc == min Z d(e)x(e)
ecE

s.t. d x(e) >1 VSCV,RNS#O,R\S#0
ecé(S)

x(e) > 0 VeecE

How large can OPT /Z be?
» not larger than 2 (primal-dual for STEINER FOREST)

» can get arbitrarily close to 2, even when R =V

OPT=n-1




Bidirected cut relaxation




Bidirected cut relaxation
\ directed graph

N \ D= (V,A)

§H(S)={(v,w)eA:veS,we V\S}
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Bidirected cut relaxation

directed graph
D= (VA

§H(S)={(v,w)eA:veS,we V\S}
Zgc = min Z d(a)x(a)

acA
s.t. Zx(a)21 VSCV\{r}, RNS#D
aesé™(S)
x(a) > 0 VacA

If R = V, then Zj- = OPT.



Full components

A full component is a tree in which all non-leaves are Steiner nodes
and all leaves are terminals.




Full components

A full component is a tree in which all non-leaves are Steiner nodes
and all leaves are terminals.



Full components

A full component is a tree in which all non-leaves are Steiner nodes
and all leaves are terminals.



Full components

A full component is a tree in which all non-leaves are Steiner nodes
and all leaves are terminals.

Fix root r € R.



Full components

A directed full component is an in-tree in which all non-leaves are
Steiner nodes and all leaves are terminals.

Fix root r € R. Direct all edges towards r.



Full components

A directed full component is an in-tree in which all non-leaves are
Steiner nodes and all leaves are terminals.

Fix root r € R. Direct all edges towards r.

directed full component C: tree (Ve, Ec) with root r¢
dc = Y ece, de



Directed component relaxation
e

C :={C : Cisdir. full comp. of G}
A(S):={CeC:rc¢S RcnNS#0}

min Z dCxC

ceC
st. Y xc >1 VSCV\{r},SNR#D
CeA(S)
vCelC

xc €{0,1}



Directed component relaxation
e

C :={C : Cisdir. full comp. of G}
A(S):={CeC:rc¢S RcnNS#0}

min Z dCxC

ceC
st. Y xc >1 VSCV\{r},SNR#D
CeA(S)
vCelC

Xc € {0, 1}



Directed component relaxation
e

C :={C : Cisdir. full comp. of G}
A(S):={CeC:rc¢S RcnNS#0}

ZBC ‘= min Z dCxC

ceC
st. Y xc =1 VSCV\{r},SNR#D
CeA(S)
vCelC

Xczo



Contracting edges

contract edge e = {v, w}:
» merge v and w into a single node v,
> dy, = min{dy,dw} YuevV

» if v or w was a terminal, ve is a terminal

Notation Let G/F denote the graph resulting from contracting all
edges in F (order does not matter).
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Algorithm

Algorithm
F:=0
for i := 1 to £ do
» Compute optimal solution x to the LP for G/F.
» Select C € C at random with probabilities xc /> ¢ o Xcr-
» F:=FUEc.
Let T/ be a minimum spanning tree on the terminals in G/F.
Return T' U F.
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Terminal spanning trees

mst(F) :=min cost of a spanning tree

on the terminals in G/F

dropge(C) :=mst(F) — mst(F U E¢)
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Terminal spanning trees

mst(F) :=min cost of a spanning tree

on the terminals in G/F

dropge(C) :=mst(F) — mst(F U E¢)

mst(F) < 3 ccc drope(C)xc




Algorithm
F:=10
for i :=1to ¢ do
» Compute optimal solution x to the LP for G/F.

» Select C € C at random with probabilities xc /> ¢ o Xcr-
» F:— FUEC.

Let T’ be a minimum spanning tree on the terminals in G/F.
Return T U F.

Assumptions

» LP relaxation can be solved efficiently.

— restrict to small full components
> In every iteration ) ccexc = L.

— introduce a dummy component



Rounding an SDP by
choosing a random hyperplane:

The Maximum Cut Problem



Max Cut

Input: graph G = (V, E), weights w : E — R,
Task: find S C V maximizing > .c5(5) w(e)
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Input: graph G = (V, E), weights w : E — R,
Task: find S C V maximizing > .c5(5) w(e)




SDP for MAX CUT

Quadratic program:
1
max 5 - Z wii(1 — xix;) w.lo.g.: V =]n|

{ijteE
st. x; € {—1,+1} Vie|[n]



SDP for MAX CUT

Quadratic program:

1

max > Z wii(1 — xix;) w.l.o.g.: V =[n]
{iJ}eE

st. x; € {—1,+1} Vie|[n]

Relaxation:
1
Z* = max 5 > w1 —v'v)
{ij}cE
s.t. vilv, = 1 Vie[n]

vi €eR” ViE[n]



Selecting a random hyperplane

. 1
Z* = max 5 Z wii(1 — v,-TvJ-)

{ij}eE
s.t. vilvi = 1 Vie|[n]
vi €R” Vie|[n]

Algorithm
Compute optimal solution v* to SDP.
Choose r € R™ with r’r = 1 uniformly at random.
Return S := {i € [n] : rTv} > 0}.

Theorem 13.6
The algorithm is a randomized 0.878-approximation for MAX CUT.
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i¢S,j¢S
{i,j} ¢ 4(5)
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Pri{i,j} €6(5)] =22

0 = arccos(v;v})




Pri{i,j} €6(5)] =22

0 = arccos(v;v})

Lemma 13.7

1 1
— arccos(x) > 0.878- 5(1 —X) Vxel[-1,1]
s



Next Wednesday: FAQ Session



