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Abstract

This paper stems from the observation that companies still rely on deterministic rolling-horizon planning

despite a substantial body of literature on stochastic planning models. To foster practical applications,

we identify barriers that limit the widespread application of stochastic programming in master production

scheduling and develop a framework to overcome them. Our solutions include modelling uncertainty from

available data, reflecting planning processes in the optimisation model and evaluating its performance accu-

rately. A two-stage stochastic model with production recourse is introduced to improve planning flexibility,

stability and communicability. It is applied on a real-world case study with large product portfolio, com-

plex production processes and uncertain seasonal demand. Out-of-sample rolling-horizon simulations show

that well-defined stochastic models can provide high demand satisfaction and low inventory costs while

improving planning stability. In particular, planning nervousness can be reduced by 40% and raw-material

nervousness by 80% compared to our industry partner’s current production scheduling solution.

Keywords: stochastic programming, recourse, raw-material ordering, planning stability

1. Introduction

Even when demand is highly uncertain, companies still rely on deterministic rolling-horizon planning

and rule-of-thumbs for safety-stock calculations in master production scheduling (Meistering and Stadtler,

2017). Yet, recent applications of stochastic programming have shown impressive results in controlled sim-

ulation environments (Gruson et al., 2021; Thevenin et al., 2021). Stochastic programming can accurately

determine the volume and timing of safety stocks based on probabilistic uncertainty models. Further, they

reflect the flexibility of rolling-horizon planning through recourse decisions that adapt to uncertainty as it

unfolds. When demand is dynamic and forecasts have poor accuracy, planning flexibility is critical to en-

sure that demand can be met. Nonetheless, stochastic programming is far from widely applied in practice

despite promising complementarity with rolling-horizon planning . This observation is especially surprising
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considering the breadth of existing research on stochastic programming. It suggests that existing models

still contain important shortcomings that prevent their application. In particular, there appears to be a lack

of discussion on how to translate models from academic settings, that rely on simplifying assumptions, to

real-world problems and their complexity.

In this paper, we study how to overcome barriers facing practitioners when applying stochastic programming

to master production scheduling. First, we identify barriers that still prevent the application of stochastic

programming. We distinguish barriers relating to the identification and representation of uncertainty, relat-

ing to the development of stochastic planning models that fit existing planning structures, and relating to

the computational challenges of evaluating model performance. Second, we propose a decision framework

to set up stochastic models in master production scheduling. We present novel strategies to overcome the

barriers such as aggregating products into optimal families, which increases planning stability and allows

flexible production recourse. A two-stage stochastic model is developed to integrate the above strategies and

determine a master production schedule that provides high demand satisfaction for low inventory costs and

ensures planning stability on both the production and raw-material levels. We demonstrate our approach on

a real-world case study in the agrochemical industry and evaluate its performance through out-of-sample

rolling-horizon simulations.

The remainder of this paper is organised as follows. In Section 2, barriers limiting the application of

stochastic planning models are presented and related to existing literature. In Section 3, the real-world case

study is introduced. We discuss the specific form of the barriers identified in the previous section and we

provide an overview of our strategies to overcome them. In Section 4, uncertainty models are derived from

available historical data and used to construct scenario trees. In Section 5, stochastic planning models are

developed to improve planning flexibility, stability and communicability. In Section 6, sensitivity analyses

are conducted to tune the model and a comparison with industry benchmarks is presented. In Section 7, we

summarise our work and propose directions for future research.

2. The barriers of applying stochastic programming in master production scheduling

This section details barriers that prevent the widespread application of stochastic planning models. We

categorise the barriers in three groups relating to modelling uncertainty, the planning environment and the

numerical challenges.
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2.1. Modelling uncertainty from data

In practice, probability distributions are not available to describe demand uncertainty. Instead, uncertainty

models have to be constructed from available data.

Barrier 1 (Data scarcity). Data is essential when setting up stochastic models, yet it is especially scarce

in master production scheduling.

Master production scheduling derives tactical decisions typically aggregated on a monthly granularity with

planning horizons between 6 months and 2 years. Data sets cover only several years of historical data at

most, hence only a limited number of observations are available. Further, the relevance of older data is

limited by product life cycles and changes in market conditions (Chopra and Meindl, 2013). If demand is

dynamic, for instance if there is a yearly seasonality, only few observations of the entire demand process are

available in the data set. Yet, data is essential to measure the uncertainty of the planning environment and

to evaluate model performance in simulations. Data scarcity is an ever-present problem for planners who

require quantitative methods to support their decisions. This limits the application of sophisticated planning

techniques. In particular, recent developments in data-driven operations research (Mišić and Perakis, 2020)

may not be applicable.

Barrier 2 (Uncertainty definition). Identifying the nature, number and stationarity or lack thereof of

uncertain processes influencing demand is critical.

There are two main methods to characterise demand uncertainty. Most common is the assumption that

demand itself can be modelled as an uncertain process. This method relies on past demand observations

to predict future demand. It may be especially relevant when there is (a) a stationary demand process, (b)

seasonality, or (c) if demand follows a type of auto-regressive process (Klabjan et al., 2013). For instance,

Ban (2020) considers seasonal goods whose demand realises over a long season. Demand periods within

the season are assumed correlated but observations of the full season are assumed independent identically

distributed. Li and Disney (2017) model demand as a simple first-order auto-regressive process. In effect,

the first approach assumes that demand is a seasonal but stationary process, whereas the second approach

assumes that demand evolves over time but is locally stationary. The second method to characterise demand

uncertainty focuses on the error caused by inaccurate forecasts. The key stochastic process is then the

forecast error, which can be modelled as a probability distribution (Prak et al., 2017; Trapero et al., 2019).

Both approaches ultimately provide uncertainty models for the demand over the planning horizon. However,
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the resulting uncertainty models vary drastically when measuring either demand or forecast uncertainty from

data. Using wrong assumptions may lead to severely inaccurate models with long-lasting consequence.

This first step is fundamental when applying stochastic models from data but is often overlooked in the

literature. Practical guidelines describing methods to identify and measure uncertainty from limited data

are still missing.

Barrier 3 (Uncertainty model). It is not clear when to use past data directly and when to estimate distri-

butions, which is challenging with scarce data.

Once the uncertain processes are defined and samples have been measured from historical data, the question

arises of whether to use these samples directly in a data-driven fashion (Kleywegt et al., 2002) or to assume

that they are observations of an underlying probability distribution. Creating scenario trees directly from

data allows to capture correlation between products and period while avoiding distribution assumptions.

However, it may fail to generalise from the data set and lead to overfitting.

In the literature, demand is commonly assumed to follow a known distribution, often normal, which is fitted

to the data (Silver et al., 2016). These distributions can be sampled to create scenario trees over the horizon

(Heitsch and Römisch, 2009; Homem-de-Mello and Bayraksan, 2014). Still, there is no guarantee that

demand follows a probability distribution. Further, distribution parameters cannot be estimated precisely

from scarce data and are subject to estimation error (Prak and Teunter, 2019). In a multi-dimensional setting,

estimation error plays an even larger role since the number of observations may be much smaller than the

number of parameters to estimate. An alternative to estimating probability distribution is to use distribution-

free methods such as robust optimisation (Bertsimas et al., 2018a) or distributionally robust optimisation

(Ben-Tal et al., 2013; Wiesemann et al., 2014). Yet, these methods have been applied to problems for which

hundreds of observations are available and may not be suitable to problems with scarce data.

Barrier 2 and 3 are closely related but focus on different problems. Barrier 2 describes the challenges

in identifying the source of uncertainty and obtaining relevant samples from past data whereas Barrier 3

discusses the different methods to process the samples.

Contributions. The strategies to overcome the barriers are typically problem specific. We propose two

approaches to measure uncertainty from limited data based on seasonal demand uncertainty and forecast

error respectively. For both uncertainty definitions, we compare the use of empirical and estimated proba-

bility distributions. The models are evaluated in simulations using real-world data. We show that accurately
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defining uncertainty is critical to ensure high demand satisfaction. In fact, deterministic models with sim-

ple rule-of-thumbs for safety stock but accurate uncertainty definition outperform stochastic models with

wrong uncertainty definition. Thus, Barrier 2 is found more critical for performance than Barrier 3, which

is remarkable considering that existing literature mostly focuses on the latter barrier at the expense of the

former.

2.2. Reflecting the planning process

Stochastic models can reduce costs through recourse decisions that adapt to uncertainty as it unfolds. How-

ever, they also need to respect the constraints of the planning processes. The interaction of recourse models

with planning flexibility, communicability and stability remains understudied.

Barrier 4 (Flexibility representation). Stochastic programming models must be designed to properly

represent the planning flexibility resulting from rolling-horizon planning processes.

Since scenario-based stochastic programming can introduce recourse variables that adapt to the uncertain

process as it unfolds (King and Wallace, 2012), it can capture the flexibility of rolling-horizon planning.

Flexibility in production planning has been studied in early works by Escudero et al. (1993) and Brandi-

marte (2006) who compare different recourse structures in lot-sizing problems. Recently, Tavaghof-Gigloo

and Minner (2020) propose a heuristic to integrate re-planning opportunities in a single-stage stochastic

model by reducing safety stock levels when capacity is unlimited. Yet, recourse decisions should also im-

prove costs when capacity is tight thanks lower safety stocks and better prioritisation of products over the

horizon. Hence, how to best match the flexibility of stochastic programming (i.e. the definition of stages

and recourse decisions) to the flexibility of the production environment is also an open question.

Quantifying the value of recourse in rolling-horizon planning has only be done partially. Existing works

conduct static comparison of two-stage and multi-stage formulations in problems such as production plan-

ning with demand and yield uncertainty (Kazemi Zanjani et al., 2010), and lot-sizing and scheduling (Hu

and Hu, 2018). Static evaluations ignore the rolling-horizon implementation of planning models, which pro-

vides flexible re-planning opportunities to stochastic models without recourse even if they are not explicitly

modelled. A notable exception has been proposed by Stephan et al. (2010), who accurately measure the

value of multi-stage models in capacity planning problems by using a rolling two-stage benchmark. Hence,

practitioners cannot estimate the value of applying recourse models in rolling horizon.
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Barrier 5 (Communicability). Scenario-independent reference plans need to be communicated to up-

stream and downstream members of the supply chain.

Recourse models typically ignore the communicability requirement of rolling-horizon planning, which is

essential throughout the supply chain. Contrary to deterministic or stochastic models without recourse,

there is no unique plan obtained when solving a model with recourse. Instead, a tree of decisions is derived

over the planning horizon that merely represents what-if statements. However, unconditional production

plans need to be communicated to downstream parts of the supply chain to coordinate production schedules

as well as the distribution and sale of finished goods.

In the same vein, raw-material orders are communicated to upstream parts of the supply chain to coordinate

production and purchasing activities. Considerations of raw-material ordering and availability in production

planning problems are rare and seem restricted to settings in which raw materials exhibit specific proper-

ties. For instance, Cunha et al. (2018) determine raw-material purchases with quantity-based discounts.

Bollapragada et al. (2015) investigate the stochastic optimisation of procurement and production decisions

in a make-to-order environment with supply uncertainty. More generally, Kanyalkar and Adil (2010) de-

velop a two-stage stochastic model for the procurement, production and distribution including raw materials

but consider a simple product structure with a single raw material. New formulations are thus needed to en-

sure communicability of a reference plan while allowing the flexibility of stochastic models with recourse.

Further, scenario-based multi-stage solutions are typically not implementable in practice unless the true

uncertainty distribution is discrete and completely captured in the scenario tree. Thevenin et al. (2021)

investigate this issue by proposing several methods to determine a production policy from scenario-based

multi-stage solutions. Yet, it is not discussed how to translate the obtained policy into a reference plan that

provides long-term visibility.

Barrier 6 (Plan stability). Reference plans should be stable in rolling horizon with only limited changes

between successive review periods, which may restrict the flexibility of recourse decisions.

Significant plan changes create nervousness, which hinders supply chain performance, leads to loss of con-

fidence, confusion through the supply chain and ultimately higher costs (Atadeniz and Sridharan, 2020).

Seminal works analyse the nervousness resulting from lot-sizing heuristics in single-level (Carlson et al.,

1979; Sridharan et al., 1988) or multi-level environments (Blackburn et al., 1986; Ho, 1989; Zhao et al.,

2001). They develop strategies to mitigate nervousness such as freezing periods or penalising plan changes.

Recent research studies the nervousness resulting from optimal planning models. Lin and Uzsoy (2016)
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compare chance-constraint formulations to capture demand uncertainty and their impact on planning stabil-

ity. Herrera et al. (2016) integrate different nervousness penalty costs in the objective function to identify a

balance between stability and operational costs. Meistering and Stadtler (2017) propose a stabilised-cycle

strategy that allows changes in production decisions only when necessary to reach the target service level

Existing nervousness mitigation strategies are based on restricting planning flexibility, which may reduce

planning performance when short-term uncertainty is high. While stochastic models should derive optimal

production volumes despite the limited flexibility, it is not clear how they would perform when distributions

are not known but modelled from data. Further, since freezing periods inherently prohibit recourse oppor-

tunities, the trade-off between traditional nervousness reduction methods and stochastic programming with

recourse remains open.

Contributions. We note that existing stochastic models with recourse do not evaluate the resulting nervous-

ness, since reference plans are not determined in existing stochastic programming models. By providing

reference plans when solving stochastic models with recourse, we can bridge the gap between research on

planning stability and stochastic programming.

We contribute to existing literature in several ways. First, we develop a two-stage model that provides re-

course and reference plans based on aggregating products into optimal families. Second, we measure the

value of recourse in rolling-horizon planning with real-world data. In particular, we show that recourse

is especially beneficial when capacity is limited. Finally, we compare the use of traditional nervousness

mitigation strategies based on frozen decisions and our novel approach based on product aggregation. We

show that freezing decisions on the raw-material level does not limit planning flexibility while providing

significant stability improvements. On the other hand, the aggregation-based strategy can improve planning

flexibility, communicability and stability, thus outperforming the traditional strategy of freezing production

decisions.

2.3. Computational challenges

The evaluation of stochastic models is challenging due to several factors including long computation times,

the need for complex simulation settings, and the strong dependence of results on the assumptions used in

simulations.

Barrier 7 (Tractability). Stochastic models often exhibit a trade-off between accuracy and long computa-

tion times.
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Stochastic programming approaches, and especially multi-stage formulations, lead to notoriously long com-

putation times. Significant attention has been given to designing scenario trees with optimal size. In partic-

ular several methods have been developed to reduce the size of scenario trees while retaining their accuracy

(Dupačová et al., 2003; Heitsch and Römisch, 2003). Other approaches to improve computation times in-

clude decomposition techniques such as progressive hedging (Watson and Woodruff, 2011) and stochastic

dual dynamic programming (Shapiro, 2011). Yet, solving times depend not only on the scenario tree but

also on the recourse structure. The trade-off between computation times and flexibility offered by recourse

also needs to be analysed.

Barrier 8 (Evaluation). The performance of stochastic models should be evaluated accurately despite

limited available data.

A reliable assessment of expected performance is essential to foster the adoption of new models. This re-

liability can be achieved by simulating the model in a setting close to its practical use. Simulations can

be implemented in a rolling-horizon fashion to respect the planning structure and performed in an out-

of-sample fashion to accurately evaluate the uncertainty model. To the best of the authors’ knowledge,

out-of-sample evaluations have not been applied in production planning to evaluate stochastic models based

on real-world data. Out-of-sample evaluations have been more commonly applied to inventory manage-

ment and in particular to newsvendor problems (Beutel and Minner, 2012; Bertsimas et al., 2018b; Huber

et al., 2019; Oroojlooyjadid et al., 2020). When data is scarce and is used for both model calibration and

evaluation, carefully designing the simulation experiments is crucial.

Contributions. We study the trade-off between model accuracy and tractability by varying the scenario

size as well as the recourse structure. In both cases, we show that efficient trade-offs can be found. To

tune and evaluate the models, we propose the first out-of-sample rolling-horizon evaluation of stochastic

production planning models with real-world data. We highlight the importance of out-of-sample evaluation

by measuring the bias of in-sample evaluations.

3. Real-world case study

In this section, we introduce the industry problem and show the relevance of the barriers identified above.

While barriers may be common to many production planning problems, we believe that solution approaches

are inherently problem specific. We discuss the form of the barriers in the case study and provide an

overview of the strategies to overcome them.
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3.1. Problem setting

Our industry partner is a world-leading agrochemical company managing a global supply chain with a large

product portfolio, long production lead times and complex planning problems. We focus on the production

of a restricted product portfolio of pesticides that embodies the planning challenges of the firm. Since the

use of pesticides follows the crops’ growth cycle, demand patterns exhibit strong seasonality, and accurately

forecasting demand is limited by unpredictable parameters such as weather conditions.

The production of synthetic pesticides contains two main steps: the active ingredient synthesis, in which the

molecules forming the base of the finished products are synthesised, and the formulation step, in which one

or several active ingredients are combined and diluted. The active ingredient synthesis is the most complex

process with important capital investment, long lead times and low flexibility. At this level, production is

conducted in long campaigns that realise over several months to a year. Short-term changes to campaigns

are limited by cleaning operations that can last up to several weeks. As the most value-adding process, the

active ingredient synthesis highlights the inherent challenge of agrochemical supply-chain management:

production has low flexibility and long lead times whereas demand is dynamic and hard to predict even in

the short future. Production and supply planners are thus looking for advanced strategies to manage demand

uncertainty and to ensure efficient operations throughout the supply chain.

Because of the complexity of the global network, the active ingredient synthesis and formulation are planned

sequentially. Formulation planners derive the intended production over the planning horizon and deduce

the active ingredient requirements that are communicated to upstream planners. The aim of our industry

collaboration is to improve the formulation planning step to derive plans that satisfy the uncertain demand

while ensuring that stable raw-material orders are provided to upstream planners. In effect, this improved

formulation planning would act as a dampening step, reducing the uncertainty of the demand forecast as it

propagates through the supply chain.

3.2. Overcoming the barriers

From the identification of the uncertain processes to the model development and evaluation, this industry

problem encompasses the barriers of stochastic programming described in Section 2. We discuss the specific

forms taken by the barriers in this industry case and present an overview of our strategies to overcome them.

Uncertainty. Historical forecasts and past demands are available for the last four years. Because of the sea-

sonality of demand, this data set corresponds to only few observation of the entire demand process. Defining
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the uncertain processes from this limited data set is challenging since demand is dynamic and forecasts are

inaccurate. To overcome Barrier 2 (Uncertainty definition), we derive seasonal models of uncertainty. Both

demand-driven and forecast-driven are analysed based on the uncertainty of demand and forecasts respec-

tively. The two approaches provide different samples for the empirical demand distributions, which can be

either used directly or to estimate probability distributions. To overcome Barrier 3 (Uncertainty models),

we implement both approaches, estimating normal and uniform distributions from the empirical samples.

Scenarios trees are created and integrated in two-stage stochastic models.

Planning processes. The supply chain and production processes of the industry case are complex. In

particular, the active ingredients have long production lead times and are especially sensitive to planning

nervousness. Yet, flexibility is essential to ensure that demand can be met despite poor forecasts accuracy.

We overcome the barriers linked to planning flexibility, stability and communicability in several way. To

overcome Barrier 5 (Communicability), we ensure that a reference plan is always available on both the

production plan and raw-material levels. Raw-material orders and inventory are explicitly modelled. Long-

term visibility is essential for raw-material planning. However, a detailed production plan is only required

by downstream planners to determine the schedule of formulation campaigns. Hence, we can aggregate

communications on the production plan level by defining product families. The definition of the families

is a key part of our approach. To ensure that aggregated plans provide the information necessary to de-

rive production schedules, families are defined through a multi-objective optimisation models with custom

rewards and constraints that reflect production processes. Product families allow to overcome Barrier 4

(Flexibility representation) by introducing production recourse. First-stage capacity reserves are placed on

the family level, which can be used flexibly by products within in the family through recourse decisions. We

observe that plan changes within product families tend to compensate in rolling horizon so that aggregating

decisions on the family level also improves planning stability. Thus, we compare the nervousness mitiga-

tion techniques of freezing and aggregating decisions to overcome Barrier 6 (Plan stability). The different

planning strategies are integrated in a mixed-integer linear problems that optimally determines the share of

first-stage and recourse production decisions.

Numerical study. The models are evaluated through rolling-horizon simulations and extensive sensitivity

analyses are performed. We overcome Barrier 7 (Tractability) by studying the effect of the size of the

scenario trees and the number of product families that both increase the number of recourse variables. In

both cases, efficient trade-offs can be found between solution quality and model complexity. The simula-
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tion setting is crucial to overcome Barrier 8 (Evaluation). The out-of-samples rolling-horizon simulation

framework proposed is especially powerful to make generalisable conclusions from the limited amount of

data and avoid in-sample bias. To finalise the model evaluation, meaningful benchmarks are defined from

historical company data, providing an accurate assessment of expected improvements compared to current

practice. Barrier 1 (Data scarcity) is the most fundamental and challenging barrier to overcome. It underlies

all strategies applied in this paper, and is only overcome at the end of the numerical study, once we finally

identify the best model configuration and prove its benefits experimentally.

4. Modelling the uncertain process

In this section, we discuss the definition and representation of the uncertain process. We present two uncer-

tainty models based on demand uncertainty and forecast error respectively. Scenarios are obtained for both

models and used to construct two-stage scenario trees.

4.1. Seasonal demand uncertainty

A data set is available covering Y seasons of S periods each. Historical demand of the portfolio of K

products has been observed where ds,y
k is the demand for product k observed in period s of season y. To

reflect seasonality, the first uncertainty model assumes that demand follows a stationary distribution in each

period of the season and that demand periods within the season may be correlated. The planner can either

use the empirical distributionDs =
{
ds,y

k , y ∈ {1, . . . ,Y}
}

derived from past observations of demand in period

s of the season, or estimate a probability distribution to derive additional scenarios. This uncertainty model

is based solely on past demand data and ignores forecasts available in each review period. It is a static

approach that does not benefit from forecast updates obtained in rolling horizon.

4.2. Seasonal forecast error

In rolling horizon, an updated forecast is obtained in each review cycle covering a planning horizon of T

periods. Let f s,y
k,t be the forecast for product k in period t of the planning horizon as seen in review period s

of season y. We introduce an additional time index to distinguish the different versions of forecast relating

to the same demand period.

To model uncertainty in a forecast-driven fashion and reflect the seasonality of both the demand and forecast

processes, we introduce the concept of seasonal forecast error. The forecast error associated to planning
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period s of season y is defined by by es,y = (es,y
k,t ) ∈ R

K×T where

es,y
k,t = ds+t−1,y

k − f s,y
k,t , ∀k ∈ K , t ∈ T .

The novelty of this model is to assume that each planning period s has its own forecast error distribu-

tion, which is stationary across seasons. For each review period s in the season, the set of forecast error

Es = {es,y, y ∈ {1, . . . ,Y}} is the empirical distribution of the (unknown) multivariate random forecast error

distribution. The forecast error can be measured a posteriori for all periods for which the actual demand has

been observed. The empirical distribution can be used to estimate the parameters of an assumed distribution

and sampled to create additional forecast error scenarios. Since it is not straightforward to decide a pri-

ori which uncertainty model provides the best results, we compare their performance numerically through

out-of-sample simulations in Section 6.2.

4.3. Two-stage scenario tree

Let yo be the current season for which we want to derive a production plan using Y past seasons. Demand-

driven samples obtained in Section 4.1 can be used directly to form a scenario tree.

Forecast error samples can also be used to generate a scenario tree by correcting the currently available

forecast with forecast error samples. Let N − 1 be the number of forecast error samples equal to Y if

one uses the empirical distribution. A two-stage scenario tree can be constructed as a fan containing N

equiprobable sample paths. The first path is set to the deterministic demand forecast f 1,s,yo
k,t = f s,yo

k,t for all

products over the planning horizon. The remaining scenarios can be determined as

f ,s,yo
k,t,n+1 = f s,yo

k,t + es
k,t,n, ∀k ∈ K , t ∈ T , n ∈ {1, . . . ,N − 1} .

to correct the deterministic forecast with the seasonal forecast error samples of the same review period.

Scenarios with negative demand are corrected to take the value zero.

4.4. Summary

We have shown strategies to overcome Barrier 2 (Uncertainty definition) and Barrier 3 (Uncertainty model)

with limited available data. Seasonal uncertainty models based on forecast and demand data have been pre-

sented and integrated in two-stage scenarios trees. The use of scenarios based on the empirical distribution

and estimated distribution have been considered.
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5. Stochastic planning model with flexibility, stability and communicability

The uncertainty model and scenario tree presented in the previous section are now integrated in a stochastic

planning model. We present different recourse structures and strategies to ensure communicability and

flexibility of reference plans for both production and raw-material decisions. The notation for this section

is summarised in Table A.1 in the appendix.

5.1. Stochastic model without recourse

The planner manages a portfolio of K products made from A raw materials and needs to determine a pro-

duction plan over a horizon of T periods. Consider a general product structure in which raw material can

be used for several products and each product can require multiple raw materials. The bill of material is

given by U = (uk,a) ∈ RK×A where uk,a is the amount of raw material a required to produce one unit of

product k. The planner is responsible for several production sites that serve a regional market. Each site

contains parallel lines with different capacity κl and product portfolio. The set of production lines at site w

is denoted by Lw. The set of products that can be formulated on line l is given by Kl = {k ∈ K | ρk,l = 1}.

Raw-material inventory is kept in a single warehouse and shared over the production sites whereas finished

goods are held at the production sites. At the end of each review period, the company incurs a per-unit

holding costs νa for raw-material a and µk,w for product k in site w. The problem setting is illustrated in

Figure 1 for two production sites and five lines.

𝑙2

𝑙1

Site 𝑤1

𝑙4

𝑙5
Site 𝑤2

𝑙3

Raw-material 

inventory 𝒀

Finished-goods 

inventory 𝑰

Finished-goods 

inventory 𝑰

Production lines

Production lines

Demand 

𝒅

Figure 1: Supply, production and inventory system for W = 2 sites and L = 5 lines.

In each review period, the planner uses a scenario tree f ∈ R(K×T×N) to determine a production plan over

the horizon and to communicate raw-material orders to the upstream level. The planner’s goal is to satisfy
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the uncertain demand while minimising the inventory costs of raw materials and finished goods. Unmet

demand is considered a lost sale and penalised with per-unit cost γk. The planning model is formulated as

a two-stage stochastic model. Production decisions and raw-material orders are set as first-stage variable in

order to provide a reference plan over the horizon. The inventory, sales and lost-sales decisions are set as

recourse variables. The model is presented in Problem (1) where the season and review period indices are

dropped for clarity.

min
T∑

t=1

 1
N

K∑
k=1

W∑
w=1

µk,w

N∑
n=1

ik,w,t,n +

A∑
a=1

νa · ya,t +
1
N

K∑
k=1

γk

N∑
n=1

·bk,t,n

 (1a)

s.t. ik,w,t,n = ik,w,t−1,n +
∑
l∈Lw

qk,l,t − sk,w,t,n, ∀k,w, t, n (1b)

fk,t,n = bk,t,n +

W∑
w=1

sk,w,t,n, ∀k, t, n (1c)

K∑
k=1

qk,l,t ≤ κl, ∀l, t (1d)

ya,t = ya,t−1 + za,t −

K∑
k=1

L∑
l=1

βk,a · qk,l,t, ∀a, t (1e)

qk,l,t, ya,t, za,t ≥ 0, ∀k,w, l, a, t (1f)

ik,w,t,n, bk,t,n, sk,t,n ≥ 0, ∀k, l,w, t, n (1g)

The objective function in (1a) minimises the expected costs of inventory and lost sales over the different

scenarios where the lost-sales penalty cost γk adjusts the conservativeness of the solution. Constraint (1b)

describes the inventory balance at the production sites. Constraint (1c) ensures that demand is satisfied from

sales or accounted as a lost sale in each scenario path. Constraint (1d) limits the production on each line to

its capacity in each period. Constraint (1e) describes the raw-material inventory balance. Constraints (1f)

and (1g) specify the domain of the first-stage and recourse decisions variables respectively.

To improve planning stability, production and raw-material decisions can be frozen over the short-term

horizon, prohibiting changes from decisions made in the previous review period. The frozen horizon can be

implemented through the additional constraints

za,t = z0
a,t, ∀a, t ≤ τa (2a)

qk,l,t = q0
k,l,t, ∀k, l, t ≤ τk (2b)
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where z0
a,t and q0

k,l,t are raw-material orders and production values determined in the previous review period.

The length of the frozen horizon for production decisions τk and raw-material orders τa is chosen by the

planner.

The stochastic model presented in (1) overcomes Barrier 5 (Communicability) by providing a reference

plan on both the production and raw-material levels. Barrier 6 (Plan stability) can be overcome by freezing

decisions on either the raw-material, the production levels, or both. However, the resulting model provides

low flexibility since there is no recourse production and short-term decisions are frozen.

5.2. Improving flexibility through production recourse

By allowing recourse, decisions can be adapted to each scenario leading to less conservative here-and-

now decisions. However, recourse variables limit planning communicability since the planner does not

determine a unique reference plan but a tree of decisions. We introduce a stochastic model with recourse

that provides high flexibility and communicability. The model is based on product families built through

a data-driven optimisation model with custom rewards and constraints that reflect the product structure.

The families are integrated in the planning model that reserves capacity on the family level through first-

stage decisions. Thus, a reference plan is obtained on the family level. Recourse production decisions

that consume the reserved capacity are implemented for products within families. In the numerical study,

we show that aggregating production decisions over products improves planning stability since production

changes tend to compensate within product families.

5.2.1. Product families: a multi-objective problem

The product-to-family assignment problem is a multi-criteria decision problem. Together with our industrial

partner, we identify properties that the final assignment should exhibit: (1) the family assignment should

cover many products, (2) a large share of the demand should be covered in product families, and (3) products

with high uncertainty should be prioritised in the allocation. Each property is formulated as a normalised

reward function, so that the rewards can be weighted easily to reflect planners’ preferences. The product

families should also respect the operational constraints and provide high visibility to site planners and

schedulers. The product families are built in a data-driven fashion by using the historical data set of Y

seasons.
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Custom reward functions. Let xk, f be the binary variable equal to 1 if product k is assigned to family f .

The first reward function is given by

ψ1(X) =
1
K

F∑
f =1

K∑
k=1

xk, f

and simply counts the number of products assigned to families. The second reward quantifies the share of

demand covered by assigned products. It is given by

ψ2(X) =
1∑K

k=1 tdk

F∑
f =1

K∑
k=1

tdk · xk, f

where tdk =
∑Y

y=1
∑S

s=1 ds,y
k is the total demand of product k over the data set. The third reward prioritises

products with high uncertainty. It is expressed by

ψ3(X) =
1∑K

i=1 f ei

F∑
f =1

K∑
k=1

f ek · xk, f

where f ek represents the difficulty to forecast product k. In this paper, we measure the uncertainty of a

product using the weighted mean absolute percent error (wMAPE). This measure is normalised and allows

to compare the forecast error of products with different demand share. The wMAPE forecast error in review

period s of season y is given by

f es,y
k,t =

∑T
t=1 ωt | d

s+t−1,y
k − f s,y

k,t |∑T
t=1 ωt · d

s+t−1,y
k

∀k, t.

where the weighting factor ωt emphasises forecast error over the short-term horizon. The average product

forecast error is then calculated as f ek = 1
T

∑T
t=1 f ek,t.

Model formulation. The optimisation model is formulated in Problem (3).

max
x

3∑
i=1

wi · ψi(x) (3a)

s.t.
F∑

f =1

xk, f ≤ 1, ∀k (3b)

xk1, f · xk2, f ≤ ρk1,l · ρk2,l, ∀k1, k2, l, f (3c)

xk1, f · xk2, f ≤ 1 − mk1,a1 · mk2,a2 · (1 − mk1,a2) · (1 − mk2,a1) (3d)

− mk1,a2 · mk2,a1 · (1 − mk1,a1) · (1 − mk2,a2), ∀k1, k2, a1, a2, l, f ,

xk, f ∈ {0; 1}, ∀k, f . (3e)
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The objective function in (3a) maximises the weighted sum of rewards. Constraint (3b) ensures that a

product is assigned to at most one family. Constraint (3c) specifies that all products within a family must

be produced on the same set of production lines. Constraint (3d) states that there is always a sequence

of products feasible without cleaning operation within a product family. Although cleaning operations are

outside the scope of tactical planning, we ensure that the reference plan on the family level provides high

visibility for the site schedulers. In the agrochemical industry, cleaning operations are conducted each time

a raw material is removed when switching equipment from one product to the next. Let m = (mk,a) be the

raw-material usage matrix where mk,a is equal to 1 if product k requires raw material a and 0 otherwise.

Constraint (3d) holds for any number of products and raw materials. Although the above formulation is

non-linear, the product of binary variables in Constraints (3c) and (3d) can be linearised by adding auxiliary

variables zk1,k2, f and the following constraints:

zk1,k2, f ≤ xk1, f , ∀k1, k2, f (4)

zk1,k2, f ≤ xk2, f , ∀k1, k2, f (5)

zk1,k2, f ≥ xk1, f + xk2, f − 1, ∀k1, k2, f . (6)

5.2.2. Two-stage stochastic model with production recourse

The product families are integrated in a stochastic model that allows recourse production decisions. The

extended stochastic model with family reserves and production recourse is formulated in Problem (7).

min
T∑

t=1

K∑
k=1

W∑
w=1

µk,w

N∑
n=1

1
N

ik,w,t,n +

A∑
a=1

νa ·

N∑
n=1

1
N

ya,t,n +

K∑
k=1

γk

N∑
n=1

1
N
· bk,t,n (7a)

s.t. ik,w,t,n = ik,w,t−1,n +
∑
l∈Lw

(
qk,l,t + rk,l,t,n

)
− sk,w,t,n, ∀k,w, t, n (7b)

fk,t,n = bk,t,n +

W∑
w=1

sk,w,t,n, ∀k, t, n (7c)

K∑
k=1

qk,l,t +

F∑
f =1

h f ,l,t ≤ κl, ∀l, t (7d)

∑
k∈K f

rk,l,t,n ≤ h f ,l,t, ∀ f , l, t, n (7e)

rk,l,t,n ≤

F∑
f =1

xk, f · h f ,l,t, ∀k, l, t, n (7f)

qk,l,t + rk,l,t,n ≤ κl · ρk,l, ∀k, l, t, n (7g)
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ya,t,n = ya,t−1,n + za,t −

K∑
k=1

L∑
l=1

βk,a · (qk,l,t + rk,l,t,n), ∀a, n, t (7h)

uk,t,n ·

L∑
l=1

κl · ρk,l ≥

L∑
l=1

rk,l,t,n, ∀k, t, n (7i)

N∑
n=1

uk,t,n = N − 1, ∀k, t (7j)

∑
k∈K f

L∑
l=1

rk,l,t,n ≥

L∑
l=1

h f ,l,t − v f ,t,n ·

L∑
l=1

κl, ∀ f , t, n (7k)

N∑
n=1

v f ,t,n = N − 1, ∀ f , t (7l)

rk,l,t,n, h f ,l,1 = 0, ∀k, l, f , n (7m)

za,t = z0
a,t, ∀a, t ≤ τa (7n)

qk,l,t = q0
k,l,t, ∀k, l, t ≤ τk (7o)

h f ,l,t = h0
f ,l,t, ∀ f , l, t ≤ τk (7p)

qk,l,t, h f ,l,t, za,t,≥ 0, ∀k, l, a, f , t (7q)

ik,w,t,n, bk,t,n, sk,t,n, ya,t,n, rk,l,t,n ≥ 0, ∀k, l,w, a, t, n (7r)

uk,t,n, v f ,t,n ∈ {0; 1}, ∀ f , k, t, n. (7s)

The objective function in (7a) minimises the expected costs of finished-goods inventory, raw-material in-

ventory and lost sales. Constraint (7b) describes the inventory balance of finished goods at each production

site. Constraint (7c) tracks the demand satisfaction from the sites. Constraint (7d) ensures that production

and capacity reserves on each line do not exceed available capacity. Constraint (7e) states that recourse

production within a family is restricted by its capacity reserve in each scenario. Constraint (7f) ensures that

there is no recourse production for unassigned products. Constraint (7g) specifies that production on a line

is restricted to its feasible portfolio. Constraint (7h) describes the raw material balance. Constraints (7i)

and (7j) ensure that the minimum recourse production over all scenarios is zero for each product and time

period. Constraints (7k) and (7l) force the maximum recourse production over all scenario to be equal to

the capacity buffer reserved for each product in each period. These two sets of constraints ensure that the

capacity buffer reserved for each family accounts exactly for the volatile part of demand. Constraint (7m)

states that there is no recourse variable in the first period. Constraints(7n) implements a frozen horizon on

the raw-material orders. Constraints (7o) and (7p) implement a frozen horizon on first-stage production
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decisions and capacity reserves respectively. Constraints (7q) and (7r) express the domain of the continu-

ous first-stage and recourse variables respectively. Constraint (7s) defines the auxiliary binary variables to

identify the minimum and maximum production recourse over the scenarios.

5.3. Summary

The stochastic model with recourse determines the optimal first-stage raw-material orders, production and

capacity reserves that allows flexible second-stage production decisions, overcoming Barrier 4 (Flexibility

representation). Recourse production can only be used for products within families if enough resources

have been reserved. Although it uses scenarios, the model overcomes Barrier 5 (Communicability) by

providing an aggregated reference plan defined so that a detailed production schedule can still be derived by

downstream planners. Barrier 6 (Stability) is overcome by aggregating first-stage decisions on the family

level. The model also explicitly distinguishes between parts of the plan likely to be conducted (first-stage

production) and parts of the plan potentially subject to changes (recourse production).

6. Numerical study

The numerical study applies the strategies developed in the previous sections to the real-world case study

and details the final steps to overcome barriers of stochastic programming in practice. Due to the large num-

ber of parameters and performance indicators, it is difficult to investigate their interactions in a full factorial

experiment. Instead, we analyse sequentially the strategies related to the uncertainty process from Section 4

and the planning structure from Section 5. First, we present the simulation setting, the performance metrics

and the problem parameters. Second, we compare the performance of demand-driven and forecast-driven

uncertainty models as well as the use of empirical or estimated distributions. Third, we evaluate the stochas-

tic models with varying nervousness mitigation strategies. Finally, we compare our model to the current

practice of our industrial partner.

Simulations are implemented in the Julia programming language (Bezanson et al., 2017) and are run on an

Intel(R) Core(TM) i7-4810MQ processor at 2.80Ghz using 16GB of RAM. The optimisation problems are

formulated using JuMP (Dunning et al., 2017) and solved with Gurobi 9.0. The relative MIP gap is set to

0.1% for all instances of the stochastic model with production recourse.

6.1. Simulation setting

All simulations from model parameterisation to final evaluation are conducted in an out-of-sample rolling-

horizon fashion. In each review period, the following steps are taken: (1) a production plan is calculated
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over the planning horizon using the available forecast or scenario tree, (2) the production quantity of the

first period is added to the on-hand inventory, (3) the actual demand is observed, (4) sales are subtracted

from the inventory and lost sales are observed if demand is higher than the on-hand inventory, and (5) the

new inventory position is determined.

We gather a data set containing the planning history of our industrial partner over Y = 4 seasons of S = 12

months each. Rolling-horizon simulations are run for each season independently using the other (Y − 1)

seasons to construct the uncertainty model. In each review period, the forecast and demand are taken from

the historical data set of our industrial partner. This simulation setting allows to carry Y independent out-

of-sample simulations.

The initial inventory in the first period of the season is set to the historical inventory of the company. Each

simulation is started τ = max(τa, τk) periods earlier than the first period of the season and the demand and

forecast are set to zero during this warm-up phase. The corresponding review periods are ignored for the

model evaluation. To neglect the interactions between consecutive seasons, we replace demand and forecast

values by zero for all periods later than the last period of the current simulation season.

6.1.1. Key performance indicators

The models are evaluated using four key performance indicators: the service level, the inventory costs, the

planning nervousness and the nervousness of the raw-material orders.

Key trade-off: service level and inventory. The service level is measured as the proportion of satisfied

demand over the season given by

sl =

∑S
s=1

∑K
k=1(dk,s − b(r)

k,s)∑S
s=1

∑K
k=1 dk,s

where b(r) are the realised lost sales of product k in simulation period s respectively. The inventory costs

are measured as the sum of finished-goods and raw-material inventory costs over the season as

ic =

S∑
s=1

K∑
k=1

W∑
w=1

µk,w · i
(r)
k,w,s +

S∑
s=1

A∑
a=1

νa · y
(r)
a,s

where i(r)
k,w,s and y(r)

a,s are the realised finished-goods inventory and raw-material inventory observed at the

end of period s. All inventory costs reported are normalised by dividing them by the company’s average

historical inventory costs.
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Planning stability. There is a large body of literature discussing how to measure nervousness. Quantity-

oriented and setup-oriented nervousness measures have been distinguished, which are particularly relevant

in lot-sizing contexts (Tunc et al., 2013). Early measures focus on setup-oriented nervousness such as

Carlson et al. (1979) who account only for the nervousness induced by adding a new setup in the plan.

Sridharan et al. (1988) have proposed a quantity-oriented measure that assigns weights to periods in the

horizon in order to emphasise short-term stability. While the majority of existing measures are absolute,

relative nervousness measures are more interpretable. Jensen (1993) proposes a normalised nervousness

measures that relate nervousness to the maximum nervousness possible, which can be determined from

the available capacity. However, this measure has several practical shortcomings: it cannot be applied if

the maximum nervousness is unbounded, and it might give a false sense of stability if capacity is large.

We propose a novel quantity-oriented nervousness measure that is relative to the plan itself. This measure

provides high interpretability and allows to compare several planning steps. For instance, we compare

production planning nervousness, raw-material nervousness and forecast nervousness in Section 6.4.

Planning stability is measured independently on both the production and raw material levels. Planning

nervousness is measured as the average sum of absolute changes between production volumes aggregated

on the product family level. It is based on the observation that nervousness within a family is negligible

compared to nervousness between families. Planning nervousness is measured as

ns f =
1

S − 1

S∑
s=2

T−1∑
t=1

F∑
f =1
|

L∑
l=1

(HK(s)
f ,l,t +

∑
k∈K f

Q(s)
k,l,t − HK(s−1)

f ,l,t+1 −
∑

k∈K f

Q(s−1)
k,l,t+1) | +

∑
k∈K\KF

|
L∑

l=1
Q(s)

k,l,t − Q(s−1)
k,l,t+1 |

max
(

T−1∑
t=1

L∑
l=1

K∑
k=1

Q(s)
k,l,t +

F∑
f =1

HK(s)
f ,l,t,

T−1∑
t=1

L∑
l=1

K∑
k=1

Q(s−1)
k,l,t+1 +

F∑
f =1

HK(s−1)
f ,l,t+1

)
(8)

where K \ KF is the set of products not assigned to any family. Raw-material orders nervousness is given

by

nsa =
1

S − 1

S∑
s=2

T−1∑
t=1

A∑
a=1
| Z(s)

a,t − Z(s−1)
a,t+1 |

max
(

T−1∑
t=1

A∑
a=1

Z(s)
a,t ,

T−1∑
t=1

A∑
a=1

Z(s−1)
a,t+1

) . (9)

The nervousness measures are quantity oriented. They account for plan changes due to both volume and

timing. Nervousness is calculated relative to the reference plan. This normalisation does not guarantee that

nervousness is always between 0 and 1 but increases interpretability and allows the comparison of different

models.
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6.1.2. Problem parameters

The product portfolio contains K = 55 products formulated from A = 13 raw materials. There are W = 2

production sites with 2 production lines at the first site and 3 lines at the second site. The demand is

seasonal with periodicity S = 12 periods and the planning horizon is set to T = 12 periods. The raw-

material frozen horizon is set to τa = 2 periods. There is no frozen horizon for production decisions. The

line capacities, bill of materials, each line’s product portfolio and the inventory costs have been collected

together with our industrial partner. The lost-sales penalty cost is set proportional to the product inventory

cost as γk = λ ·maxw∈W(µk,w).

6.2. Evaluation of uncertainty models

6.2.1. Pareto fronts

The stochastic models are implemented in out-of-sample rolling-horizon simulations to measure the value

of different uncertainty models and decide on the optimal configuration. We compare the performance of the

empirical distribution and estimated distributions as well as the use of forecast-driven and demand-driven

models. The value of augmenting the scenario tree with scenarios sampled from assumed distribution is

also measured.

Normal and uniform distributions are fitted to the empirical samples. A normal distribution is estimated

from the empirical mean and variance of the forecast error independently for each product and time period.

The bounds of the uniform distribution are taken as 80% and 120% of the minimum and maximum em-

pirical forecast error for each product and time period. We refrain from estimating covariance parameters

since the number of samples (Y − 1) is significantly smaller than the number of parameters to estimate

(K2 × T 2). Demand scenarios are then sampled using Descriptive Sampling (Saliby, 1990). To identify the

value of stochastic programming, we also show the Pareto front of deterministic models with exogenous

safety stock calculations. The deterministic optimisation model presented in Appendix B is implemented

with additional exogenous safety stocks determined by ssk,t = z · σk,t where σ is the standard deviation of

demand (DD) or forecast error (DF) and z is a conservativeness parameter set by the planner.

Since the planning problem has four objectives, several trade-offs exist between the performance indica-

tors presented in Section 6.1.1. We focus on the most important trade-off between realised service level

and inventory costs. While the planner is interested in achieving high demand satisfaction, it comes at

the price of more conservative decisions yielding higher inventory costs. We determine the Pareto front

of stochastic forecast-driven (SF) and demand-driven (SD) models using empirical, normal and uniform
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distributions. We study the effect of varying the number of scenarios by setting N ∈ {4, 8, 16, 32} for

the normal and uniform distributions while the number of empirical scenarios remains equal to N = 4.

For each scenario tree, a sensitivity analysis of the lost-sales penalty cost factor is performed with λ ∈

{1, 2, 5, 10, 15, 20, 25, 30, 50, 200}. Similarly, the conservativeness of the deterministic models is adjusted

through parameter z ∈ {0, 0.2, 0.4, . . . , 1.8, 2}.
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(a) N = 4 scenarios
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(c) N = 16 scenarios
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Figure 2: Pareto front between service level and inventory costs for different model configurations.

The Pareto fronts are shown in Figure 2 where each mark corresponds to the average performance over the

Y seasons for a given lost-sale penalty cost or deterministic safety factor. Several conclusions can be drawn

from the simulation results: (a) forecast-driven models outperform demand-driven models, (b) stochastic

models dominate deterministic models with exogenous safety stock calculations, (c) the value of sampling
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additional scenarios decreases quickly so that only few scenarios are necessary to achieve good perfor-

mance, and (d) the uniform distribution dominates other distributions for small scenario trees but appears

equivalent to the normal distribution for larger tree sizes.

This analysis highlights the importance of the uncertainty modelling step identified in Barrier 2 (Uncertainty

definition) when applying stochastic programming from data. Notably, the deterministic forecast-driven

model outperforms all stochastic demand-driven models, confirming our intuition that defining uncertainty

correctly may be more important that applying advanced stochastic techniques. Still, using a stochastic

model instead of a deterministic model provides significant benefits. For small sample sizes, the uniform

distribution provides the best results, which may be explained by the fact that it contains more extreme sce-

narios that allows it to reach high service levels. For large scenario trees, which provides a more accurate

evaluation of the distribution quality, the normal and uniform probability distributions yield similar perfor-

mance. The results suggest that overcoming Barrier 2 (Uncertainty definition) is even more important than

Barrier 3 (Uncertainty model), even though the latter has received much more attention in the literature.

6.2.2. Out-of-sample regret

To highlight the importance of performing out-of-sample simulations, we compare the results of in-sample

and out-of-samples simulations. We investigate the relative out-of-sample regret, which is defined as the

difference between the average performance obtained with in-sample and out-of-sample simulations divided

by the in-sample performance.
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(a) Service level regret
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Figure 3: Out-of-sample regret of realised (a) service level and (b) inventory cost.

The relative regret of service level and inventory costs is shown on Figure 3 as a function of the lost-sales
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penalty factor. The figure shows that all service level regrets are negative. In-sample simulations have an

optimistic bias, which is consistent over all uncertainty models. Similarly, the inventory regret shows that

out-of-samples inventory costs are overall higher than their in-sample estimates. Interestingly, the empirical

distribution shows the highest regret on both the service level and inventory costs. Increasing the size of the

scenario trees does not reduce the out-of-sample regret of estimated distributions. On the contrary, it leads

to overall higher service level regret.

6.2.3. Summary

Determining the Pareto fronts of the models with different uncertainty process definition and representation

allows to overcome Barrier 2 (Uncertainty definition) and Barrier 3 (Uncertainty model). The out-of-sample

evaluations are a key component for overcoming Barrier 1 (Data scarcity) and Barrier 8 (Evaluation). They

provide an accurate and unbiased estimate of model performance. They also highlight the ability to gener-

alise from past observations by estimating probability distributions and sampling from them. We overcome

Barrier 7 (Tractability) by observing that a small scenario tree is enough to provide good out-of-sample

performance. In the remainder of the numerical study, we use the forecast-driven stochastic model with

N = 8 scenarios sampled from the uniform distribution. The lost-sales penalty cost factor is set to λ = 15,

which ensures a satisfying trade-off between between service level and inventory costs.

6.3. Stochastic programming, recourse and planning stability

In this part, we investigate the trade-off between planning flexibility, stability and communicability. First,

we illustrate the reference plan obtained with product families. Then, we evaluate the value of recourse and

compare the effect of freezing and aggregating production decisions to mitigate nervousness.

6.3.1. Planning communicability

The stochastic model with production recourse presented in Section 5.2.2 determines a reference plan as a

combination of capacity reserves and first-stage production decisions. An example is shown in Figure 4 for

F = 4 product families, where production is shown relative to available capacity in each period. The figure

shows the first-stage decisions aggregated over all products as well as the capacity reserves for the four

families. It illustrates the variation in volume and timing between the different families over the planning

horizon. The capacity reserves can be understood as the volatile part of the plan since they are used differ-

ently in each recourse scenario by the products in the family. Hence, a reference plan can be communicated

while allowing flexible product-specific decisions.
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Figure 4: Capacity reserves and first-stage production decisions relative to available capacity.

6.3.2. Raw-material stability

We analyse the impact of freezing raw-material ordering decisions by varying the frozen horizon length τa

within the set {0, 1, 2, 3, 4, 5, 6}. The results are shown in Figure 5, which shows that freezing raw-material

ordering decisions is an effective strategy to improve raw-material stability although it leads to increased

inventory costs.
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Figure 5: Sensitivity analysis of raw-material ordering lead time.

The stochastic model maintains high service level by increasing safety inventory, suggesting that the sce-
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nario tree accurately captures the raw-material uncertainty over the prediction horizon. Interestingly, there

is no distinguishable effect on planning nervousness. Freezing raw-material orders does not reduce planning

flexibility if enough safety inventory is available on the raw-material level. Hence, we fix the raw-material

lead time to τa = 2 to decrease raw-material nervousness with acceptable inventory costs increase.

6.3.3. Plan stability

In Section 5, two methods are presented to mitigate planning nervousness. The first strategy freezes pro-

duction decisions over the short-term horizon while the second aggregates decisions over optimally defined

families. We evaluate and compare their performance in a sensitivity analysis. In Figure 6, we show a side-

by-side comparison of the effect of increasing the length of the frozen horizon and increasing the number

of product families.

As for raw materials, implementing a frozen horizon on the production level gives significant reduction in

planning nervousness. However, it leads to small decrease in average service level and comes at the cost of

increased inventory costs. Freezing the production horizon also has a stabilising effect on raw-material or-

ders since production flexibility is strongly reduced. On the other hand, the stochastic model with recourse

provides high stability, high demand satisfaction and low costs. Since the product-to-family assignment

model prioritises the assignment of products with high demand and large forecast errors, few product fami-

lies are sufficient to observe large improvements in planning stability. As the number of families increases,

planning nervousness decreases with diminishing marginal returns. For F = 4 families, the model can

reduce inventory costs by 6% while the average service level is decreased by only 1% and planning ner-

vousness is reduced by 40%. On the contrary, freezing production decisions overly restricts the flexibility

of the model, which may lead to unacceptable cost increase.

6.3.4. Value of recourse under varying capacity utilisation

In the agrochemical industry, capacity is expensive and capacity planning is an important long-term prob-

lem. To demonstrate the robustness of our approach in diverse settings, we analyse performance under

varying capacity. Available capacity is reduced in 5% increments from 100% to 40%. The average per-

formance are shown in Figure 7 for the stochastic model without recourse corresponding to F = 0 family,

the stochastic model with recourse and F = 4 families, as well as the stochastic model without family and

frozen horizon τk = 1.

Figure 7 shows that inventory increases as capacity is further reduced, leading to higher costs but also
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Figure 6: Comparison of nervousness mitigation strategies on planning level.

higher service level. When capacity is severely limited, a steep decline in service level is observed. The

simulations highlight that the value of recourse is robust over a wide range of capacity settings. Remark-

ably, the stochastic model with recourse provides highest service level and lower costs when capacity is

highly utilised, which corresponds to capacity reduction of 65% and lower. On the contrary, the stochastic

model with frozen production decisions yields the highest inventory costs and lowest service level over all

instances. Hence, production flexibility is essential to manage short-term uncertainty when capacity is lim-

ited.
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Figure 7: Performance of stochastic models under varying capacity.

It is interesting to observe that realised service level is overall higher when capacity is limited. With little

available capacity, production starts earlier and uses less accurate forecasts. Hence, additional safety stock

are placed, leading to both higher inventory and service level. Yet, we note that the obtained solutions is

a dominated solution on the Pareto front shown in Figure 2. The Pareto analysis performed in Section 6.2

should be performed with the new capacity to decide on the optimal trade-off between service level and

inventory costs and identify the lost-sales penalty cost factor that achieves the target service level.

6.3.5. Summary

The barriers linked to the planning processes have been overcome thanks to several strategies. Barrier 5

(Communicability) is solved by explicitly integrating raw-material orders and determining a reference plan

on the family level. Barrier 4 (Flexibility representation) is overcome through recourse decisions, which

proves especially relevant when capacity is highly utilised. Barrier 6 (Plan stability) is resolved by imple-

menting a frozen horizon on raw-material orders and aggregating decisions over families. We show that

there is not necessarily a trade-off between planning stability and flexibility. The proposed approach based

on product aggregation is especially successful since it overcomes the above barriers jointly.
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6.4. Comparison with industry benchmarks

To conclude the numerical study, we compare our approach to the current practices of our industrial partner.

The stochastic model with N = 8 scenarios sampled from a uniform distribution and F = 4 families is

compared to two benchmarks based on the historical data of our industry partner.

6.4.1. Benchmark definition

The forecast benchmark assesses the quality of the demand forecast. The service level of the benchmark is

measured through a rolling simulation in which the on-hand inventory is set equal to the demand forecast,

thus evaluating the forecast accuracy of the first period in the horizon. Planning and raw-material nervous-

ness are determined by applying Equation (8) and Equation (9) respectively using the demand forecasts and

forecasts translated into raw materials using the bill-of-material. The forecast benchmark does not lead to

inventory costs, which are not reported.

The company benchmark represents the practice of our industrial partner. Currently, a combination of de-

terministic automated MRP software and expert knowledge is used to derive a production plan in each

review period. The benchmark is based on the history of production plans and inventory levels. The service

level of the company benchmark is measured by comparing the sum of historical on-hand inventory and

the production plan implemented in rolling horizon to the demand. The inventory costs are determined

from the historical inventory of raw materials and finished goods. Planning nervousness is measured using

Equation (8). Raw-material orders are obtained by converting the finished-goods production plan on the

raw-material level and by accounting for on-hand raw-material inventory. Raw-material nervousness is then

deduced using Equation (9).

6.4.2. Simulation results

The out-of-sample rolling-horizon simulation results are presented in Figure 8 for all seasons. The average

results are given in Table 1. The forecast accuracy is poor since the forecast benchmark yields lowest service

level in all seasons. Interestingly, the deterministic model provides higher service level although it uses the

same demand forecasts. This can be explained by the fact that the deterministic model carries inventory

from one period to the next if it produces more than the actual demand. This highlights a bias in the

forecasting process: demand tends to be forecast earlier than it actually realises, which leads to inventory

build up that is used in later periods. Overall the company benchmark achieves a high service level and

outperforms the forecast and deterministic models, highlighting the value of planner expertise.
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Figure 8: Simulation results over four seasons: (a) service level, (b) inventory, (c) planning nervousness, and (d) raw-material

nervousness.

The stochastic model with F = 4 families achieves high service level consistently over the four seasons. It

reduces inventory costs by more than 33% compared to the company benchmark, which suggests an efficient

placement of safety stocks. It also yields substantial improvements in stability as planning nervousness

is reduced by 40% thanks to the aggregation of planning decisions on the family level. Raw-material

nervousness is reduced by almost 80% on average, which results in lower nervousness than the forecast

benchmark. Thus, the planning step acts as a dampening step. Short-term demand variability is effectively

mitigated, which provides a robust ordering signal to upstream raw-material planners.

The simulation setting and benchmark definition allows us to overcome Barrier 8 (Evaluation). The results

show that the stochastic model with production recourse improves all performance indicators compared to

the company historical practice: customer satisfaction is increased, inventory costs are reduced and planning

is more stable on both the finished-goods and raw-material orders levels.
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Table 1: Average value of KPIs over all seasons and value relative to company.

KPI Company Forecast Deterministic Stochastic F = 0 Stochastic F = 4

Service level [in %] 90.69 81.54 83.66 94.74 94.14

Relative [in %] 100 89.9 92.2 104.5 103.8

Relative inv. costs [in %] 100 - 46.7 71.5 66.2

Relative fin.-goods inv. costs [in %] 100 - 33.8 80.3 76.2

Relative raw-mat. inv. costs [in %] 100 - 62.2 61 54.2

Planning nervousness [in %] 54.5 22 34.4 53.9 31

Relative [in %] 100 40.4 63.1 99 56.8

Raw-mat. nervousness [in %] 60.7 17 7.9 13.1 12.9

Relative [in %] 100 28 13 21.6 21.3

7. Conclusion

This paper aims to foster the use of stochastic programming in master production scheduling. First, we

identify barriers that challenge the application of stochastic programming and relate them to a real-world

case study in the agrochemical industry. Then, we discuss how to model the uncertainty from limited avail-

able data and construct scenario trees to represent future demand. The scenario trees are integrated into

stochastic planning model that reflect the planning processes. The trade-off between planning communi-

cability, stability and flexibility are integrated in a two-stage stochastic model that determine the optimal

recourse production volumes. Finally, we demonstrate our framework on the case study, determine the best

model configuration through sensitivity analyses and compare its result to industry practice.

The results of this paper extend beyond the scope of the case study considered. The barriers identified are

common to a wide array of manufacturing environment. We hope to stimulate the discussion on their rel-

evance and encourage the development of solutions suitable to varied production settings. The simulation

study allows us to emphasise the importance of the definition and representation of the uncertain processes.

Whereas existing literature overwhelmingly assumes that uncertainty models are available, we show that the

carefully modelling uncertainty is critical. Indeed, a simple deterministic model with the right uncertainty

model outperforms advanced stochastic models with inaccurate uncertainty definition.

We discern several directions for future research. The analysis of nervousness mitigation by aggregating

production decisions could be extended to a multi-level supply chain. The application of advanced models
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to characterise the forecast revision process such as the Martingale Model of Forecast Evolution of Heath

and Jackson (1994) could be investigated to further exploit available data and derive robust uncertainty

models.
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Appendix A. Notation of stochastic models.

Table A.1: Notation of stochastic models

Sets

A Set of raw materials {1, . . . , A}

L Set of production lines {1, . . . , L}

K Set of products {1, . . . ,K}

K f Set of products within family f

T Set of time periods {1, . . . ,T }

W Set of production sites {1, . . . ,W}

Lw Set of lines {1, . . . , Lw} at site w

Parameters

fk,t Demand forecast for product k in period t

κl Capacity of line l

γk Lost-sale penalty cost of product k

βk,a Consumption of raw material a per unit of product k

µk,w Inventory holding cost of product k at site w

νa Inventory holding cost of raw material a

ρk,l Equal to 1 if product k can be produced on line l, 0 otherwise

xk, f Product-to-family assignment, equal to 1 if product k is assigned to family f

Decision variables

qk,l,t Production volume of product k on line l in period t

za,t Order of raw material a for period t

bk,t,n Lost sales of product k at the end of period t in scenario n

sk,w,t,n Sales of product k assigned to site w in period t in scenario n

ik,w,t,n Inventory of product k on hand at site w at the end of period t in scenario n

rk,l,t,n Recourse production of product k on line l in period t in scenario n

Ya,t,n Inventory of raw material a at the end of period t in scenario n

uk,t,n Auxiliary variable to track minimum recourse production over all scenarios n

for product k in period t

v f ,t,n Auxiliary variable to track maximum recourse production over all scenarios n

for family f in period t
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Appendix B. Deterministic model

The deterministic production planning and raw-material ordering problem can be formulated in Prob-

lem (B.1) as a deterministic optimisation problem.

min
T∑

t=1

 K∑
k=1

W∑
w=1

µk,wik,w,t +

A∑
a=1

νa · ya,t +

K∑
k=1

γk · bk,t

 (B.1a)

s.t. ik,w,t = ik,w,t−1 +
∑
l∈Lw

qk,l,t − sk,w,t, ∀k,w, t (B.1b)

fk,t + ssk,t = bk,t +

W∑
w=1

sk,w,t, ∀k, t (B.1c)

K∑
k=1

qk,l,t ≤ κl, ∀l, t (B.1d)

ya,t = ya,t−1 + za,t −

K∑
k=1

L∑
l=1

βk,a · qk,l,t, ∀a, t (B.1e)

qk,l,t, ik,w,t, bk,t, sk,t, ya,t, za,t ≥ 0, ∀k,w, l, a, t (B.1f)

The objective function in (B.1a) minimises the inventory costs of finished goods and raw materials as well

as the lost-sales costs over the planning horizon. The lost-sale costs relax the problem to allow feasible

solutions when capacity or raw materials are insufficient to satisfy demand. As such, the lost-sales penalty

cost is typically set to a high value (λ = 1000 in our numerical study). Constraint (B.1b) describes the

inventory balance of finished goods in each site. Constraint (B.1c) ensures that demand is either satisfied

by each site’s production or counted as lost sales. Constraint (B.1d) limits the production of each line to its

capacity in each period. Constraint (B.1e) describes the raw-material inventory balance. Constraint (B.1f)

specifies the domain of the continuous decision variables.
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