Jan-Niklas Dörr

Doctoral candidate

Email: jan.doerr(at)tum.de
Phone: +49 (0)89 289 24878
Room: 1531 (building 0505)


Research interests

  • Production planning and scheduling

  • Artificial Intelligence and Machine Learning techniques

  • Mathematical modeling and optimization

  • Stochastic optimization

     


Education & Employment

Since 05/2022 Research associate
Chair of Production and Supply Chain Management
Technical University of Munich, Germany
10/2019 – 04/2022

M.Sc. Management and Technology
Technical University of Munich, Germany

10/2015 – 06/2019

B.Sc. Management and Technology
Technical University of Munich, Germany

10/2012 – 10/2019

Teaching degree in Mathematics and Physical Education
Ludwig Maximilian University Munich, Germany


Publications

(Keine Dokumente in dieser Ansicht)


Conference contributions

  • Doerr, J; Pahr, A.; Grunow, M.: Exploring the Benefits of Dynamic Scheduling in Complex Manufacturing Settings. (Vortrag / 8th Stochastic Modelling Meeting (Milano)) 2024 mehr…
  • Doerr, J; Pahr, A.; Grunow, M.: Exploring the Benefits of Dynamic Scheduling in Complex Manufacturing Settings. (Vortrag / GPOM Summer 2024) 2024 mehr…
  • Doerr, Jan-Niklas: Action space designs for stochastic production scheduling with sequence-dependent setup times. (Vortrag / QBWL (Bad Windsheim)) 2023 mehr…
  • Doerr, Jan-Niklas: Action space designs for dynamic scheduling with uncertain processing times and sequence-dependent setup times. (Vortrag) 2022 mehr…
  • Doerr, Jan-Niklas: Action space designs for dynamic scheduling with uncertain processing times and sequence-dependent setup times. (Vortrag / OR 2022 (Karlsruhe)) 2022 mehr…

Student project supervisions

  • Brendstrup, M.: Online Scheduling via Priority Functions with State-dependent Weights. Masterarbeit, 2024 mehr…
  • Boe Krogh, H.: Deep Reinforcement Learning in Production Scheduling. Masterarbeit, 2023 mehr…
  • Zlatanov, V. : Reinforcement Learning for Multi-Echelon Inventory Management. Masterarbeit, 2023 mehr…

  • Hellwig, L.: Enhancing Interpretability in Constraint Programming: Introducing a Lower Bound for a Flexible Flow Shop Scheduling Problem with Sequence-Dependent Setup Times. Bachelorarbeit, 2023 mehr…

  • Zhou, L.: Building a remote server infrastructure to conduct scientific computing in operations research. IDP-Arbeit, 2024 mehr…
  • Çakr, H.: Using Graph Neural Networks to Solve Scheduling Problems. IDP-Arbeit, 2024 mehr…
  • Creteanu, C.: Creating a Real Time Visualization for the Reports in the R&S Report Manager. IDP-Arbeit, 2023 mehr…
  • Kormann, M.: Optimization of Order Delivery Scheduling. IDP-Arbeit, 2023 mehr…
  • Doganay, C. ; Mihaescu, T.: Replicated Data View Applications for the EPR Solution. IDP-Arbeit, 2023 mehr…